cla_gercond_x - compute the infinity norm condition number of op(A)*diag(x) for general matrices
REAL FUNCTION CLA_GERCOND_X(TRANS, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK) CHARACTER*1 TRANS INTEGER N, LDA, LDAF, INFO INTEGER IPIV(*) COMPLEX A(LDA,*), AF(LDAF,*), WORK(*), X(*) REAL RWORK(*) REAL FUNCTION CLA_GERCOND_X_64(TRANS, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK) CHARACTER*1 TRANS INTEGER*8 N, LDA, LDAF, INFO INTEGER*8 IPIV(*) COMPLEX A(LDA,*), AF(LDAF,*), WORK(*), X(*) REAL RWORK(*) F95 INTERFACE REAL FUNCTION LA_GERCOND_X(TRANS, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK) INTEGER :: N, LDA, LDAF, INFO CHARACTER(LEN=1) :: TRANS INTEGER, DIMENSION(:) :: IPIV REAL, DIMENSION(:) :: RWORK COMPLEX, DIMENSION(:) :: X, WORK COMPLEX, DIMENSION(:,:) :: A, AF REAL FUNCTION LA_GERCOND_X_64(TRANS, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK) INTEGER(8) :: N, LDA, LDAF, INFO CHARACTER(LEN=1) :: TRANS INTEGER(8), DIMENSION(:) :: IPIV REAL, DIMENSION(:) :: RWORK COMPLEX, DIMENSION(:) :: X, WORK COMPLEX, DIMENSION(:,:) :: A, AF C INTERFACE #include <sunperf.h> float cla_gercond_x (char trans, int n, floatcomplex *a, int lda, floatcomplex *af, int ldaf, int *ipiv, floatcomplex *x, int *info); float cla_gercond_x_64 (char trans, long n, floatcomplex *a, long lda, floatcomplex *af, long ldaf, long *ipiv, floatcomplex *x, long *info);
Oracle Solaris Studio Performance Library cla_gercond_x(3P)
NAME
cla_gercond_x - compute the infinity norm condition number of
op(A)*diag(x) for general matrices
SYNOPSIS
REAL FUNCTION CLA_GERCOND_X(TRANS, N, A, LDA, AF, LDAF, IPIV, X, INFO,
WORK, RWORK)
CHARACTER*1 TRANS
INTEGER N, LDA, LDAF, INFO
INTEGER IPIV(*)
COMPLEX A(LDA,*), AF(LDAF,*), WORK(*), X(*)
REAL RWORK(*)
REAL FUNCTION CLA_GERCOND_X_64(TRANS, N, A, LDA, AF, LDAF, IPIV, X,
INFO, WORK, RWORK)
CHARACTER*1 TRANS
INTEGER*8 N, LDA, LDAF, INFO
INTEGER*8 IPIV(*)
COMPLEX A(LDA,*), AF(LDAF,*), WORK(*), X(*)
REAL RWORK(*)
F95 INTERFACE
REAL FUNCTION LA_GERCOND_X(TRANS, N, A, LDA, AF, LDAF, IPIV, X, INFO,
WORK, RWORK)
INTEGER :: N, LDA, LDAF, INFO
CHARACTER(LEN=1) :: TRANS
INTEGER, DIMENSION(:) :: IPIV
REAL, DIMENSION(:) :: RWORK
COMPLEX, DIMENSION(:) :: X, WORK
COMPLEX, DIMENSION(:,:) :: A, AF
REAL FUNCTION LA_GERCOND_X_64(TRANS, N, A, LDA, AF, LDAF, IPIV, X,
INFO, WORK, RWORK)
INTEGER(8) :: N, LDA, LDAF, INFO
CHARACTER(LEN=1) :: TRANS
INTEGER(8), DIMENSION(:) :: IPIV
REAL, DIMENSION(:) :: RWORK
COMPLEX, DIMENSION(:) :: X, WORK
COMPLEX, DIMENSION(:,:) :: A, AF
C INTERFACE
#include <sunperf.h>
float cla_gercond_x (char trans, int n, floatcomplex *a, int lda,
floatcomplex *af, int ldaf, int *ipiv, floatcomplex *x, int
*info);
float cla_gercond_x_64 (char trans, long n, floatcomplex *a, long lda,
floatcomplex *af, long ldaf, long *ipiv, floatcomplex *x, long *info);
PURPOSE
cla_gercond_x computes the infinity norm condition number of
op(A)*diag(X) where X is a COMPLEX vector.
ARGUMENTS
TRANS (input)
TRANS is CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate Transpose = Transpose)
N (input)
N is INTEGER
The number of linear equations, i.e., the order of the matrix
A. N >= 0.
A (input)
A is COMPLEX array, dimension (LDA,N)
On entry, the N-by-N matrix A.
LDA (input)
LDA is INTEGER
The leading dimension of the array A.
LDA >= max(1,N).
AF (input)
AF is COMPLEX array, dimension (LDAF,N)
The factors L and U from the factorization A=P*L*U as com-
puted by CGETRF.
LDAF (input)
LDAF is INTEGER
The leading dimension of the array AF.
LDAF >= max(1,N).
IPIV (input)
IPIV is INTEGER array, dimension (N)
The pivot indices from the factorization A=P*L*U as computed
by CGETRF; row i of the matrix was interchanged with row
IPIV(i).
X (input)
X is COMPLEX array, dimension (N)
The vector X in the formula op(A)*diag(X).
INFO (output)
INFO is INTEGER
= 0: Successful exit.
i > 0: The ith argument is invalid.
WORK (input)
WORK is COMPLEX array, dimension (2*N).
Workspace.
RWORK (input)
RWORK is REAL array, dimension (N).
Workspace.
7 Nov 2015 cla_gercond_x(3P)