zungr2 - torization determined by cgerqf (unblocked algorithm)
SUBROUTINE ZUNGR2(M, N, K, A, LDA, TAU, WORK, INFO) DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*) INTEGER M, N, K, LDA, INFO SUBROUTINE ZUNGR2_64(M, N, K, A, LDA, TAU, WORK, INFO) DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*) INTEGER*8 M, N, K, LDA, INFO F95 INTERFACE SUBROUTINE UNGR2(M, N, K, A, LDA, TAU, WORK, INFO) COMPLEX(8), DIMENSION(:) :: TAU, WORK COMPLEX(8), DIMENSION(:,:) :: A INTEGER :: M, N, K, LDA, INFO SUBROUTINE UNGR2_64(M, N, K, A, LDA, TAU, WORK, INFO) COMPLEX(8), DIMENSION(:) :: TAU, WORK COMPLEX(8), DIMENSION(:,:) :: A INTEGER(8) :: M, N, K, LDA, INFO C INTERFACE #include <sunperf.h> void zungr2(int m, int n, int k, doublecomplex *a, int lda, doublecom- plex *tau, int *info); void zungr2_64(long m, long n, long k, doublecomplex *a, long lda, dou- blecomplex *tau, long *info);
Oracle Solaris Studio Performance Library zungr2(3P)
NAME
zungr2 - generate all or part of the unitary matrix Q from an RQ fac-
torization determined by cgerqf (unblocked algorithm)
SYNOPSIS
SUBROUTINE ZUNGR2(M, N, K, A, LDA, TAU, WORK, INFO)
DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
INTEGER M, N, K, LDA, INFO
SUBROUTINE ZUNGR2_64(M, N, K, A, LDA, TAU, WORK, INFO)
DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
INTEGER*8 M, N, K, LDA, INFO
F95 INTERFACE
SUBROUTINE UNGR2(M, N, K, A, LDA, TAU, WORK, INFO)
COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A
INTEGER :: M, N, K, LDA, INFO
SUBROUTINE UNGR2_64(M, N, K, A, LDA, TAU, WORK, INFO)
COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A
INTEGER(8) :: M, N, K, LDA, INFO
C INTERFACE
#include <sunperf.h>
void zungr2(int m, int n, int k, doublecomplex *a, int lda, doublecom-
plex *tau, int *info);
void zungr2_64(long m, long n, long k, doublecomplex *a, long lda, dou-
blecomplex *tau, long *info);
PURPOSE
zungr2 generates an M by N complex matrix Q with orthonormal rows,
which is defined as the last M rows of a product of K elementary
reflectors of order N
Q = H(1)**H * H(2)**H . . . H(K)**H
as returned by ZGERQF.
ARGUMENTS
M (input) The number of rows of the matrix Q. M >= 0.
N (input) The number of columns of the matrix Q. N >= M.
K (input) The number of elementary reflectors whose product defines the
matrix Q. M >= K >= 0.
A (input/output)
On entry, the (m-k+i)-th row must contain the vector which
defines the elementary reflector H(i), for i = 1,2,...,k, as
returned by ZGERQF in the last k rows of its array argument
A. On exit, the m-by-n matrix Q.
LDA (input)
The first dimension of the array A. LDA >= max(1,M).
TAU (input)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ZGERQF.
WORK (workspace)
dimension(M)
INFO (output)
= 0: successful exit;
< 0: if INFO = -i, the i-th argument has an illegal value.
7 Nov 2015 zungr2(3P)