Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

zunmqr (3p)

Name

zunmqr - N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

Synopsis

SUBROUTINE ZUNMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

CHARACTER*1 SIDE, TRANS
DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER M, N, K, LDA, LDC, LWORK, INFO

SUBROUTINE ZUNMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)

CHARACTER*1 SIDE, TRANS
DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO




F95 INTERFACE
SUBROUTINE UNMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)

CHARACTER(LEN=1) :: SIDE, TRANS
COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A, C
INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

SUBROUTINE UNMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
LDC, WORK, LWORK, INFO)

CHARACTER(LEN=1) :: SIDE, TRANS
COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A, C
INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO




C INTERFACE
#include <sunperf.h>

void zunmqr(char side, char trans, int m, int n, int  k,  doublecomplex
*a,  int  lda, doublecomplex *tau, doublecomplex *c, int ldc,
int *info);

void zunmqr_64(char side, char trans, long m, long n, long  k,  double-
complex  *a,  long lda, doublecomplex *tau, doublecomplex *c,
long ldc, long *info);

Description

Oracle Solaris Studio Performance Library                           zunmqr(3P)



NAME
       zunmqr  -  overwrite  the general complex M-by-N matrix C with   SIDE =
       'L' SIDE = 'R' TRANS = 'N'


SYNOPSIS
       SUBROUTINE ZUNMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
             LWORK, INFO)

       CHARACTER*1 SIDE, TRANS
       DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
       INTEGER M, N, K, LDA, LDC, LWORK, INFO

       SUBROUTINE ZUNMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
             LWORK, INFO)

       CHARACTER*1 SIDE, TRANS
       DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
       INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO




   F95 INTERFACE
       SUBROUTINE UNMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
              WORK, LWORK, INFO)

       CHARACTER(LEN=1) :: SIDE, TRANS
       COMPLEX(8), DIMENSION(:) :: TAU, WORK
       COMPLEX(8), DIMENSION(:,:) :: A, C
       INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

       SUBROUTINE UNMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
              LDC, WORK, LWORK, INFO)

       CHARACTER(LEN=1) :: SIDE, TRANS
       COMPLEX(8), DIMENSION(:) :: TAU, WORK
       COMPLEX(8), DIMENSION(:,:) :: A, C
       INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO




   C INTERFACE
       #include <sunperf.h>

       void zunmqr(char side, char trans, int m, int n, int  k,  doublecomplex
                 *a,  int  lda, doublecomplex *tau, doublecomplex *c, int ldc,
                 int *info);

       void zunmqr_64(char side, char trans, long m, long n, long  k,  double-
                 complex  *a,  long lda, doublecomplex *tau, doublecomplex *c,
                 long ldc, long *info);



PURPOSE
       zunmqr overwrites the general complex M-by-N matrix C with TRANS = 'C':
       Q**H * C       C * Q**H

       where Q is a complex unitary matrix defined as the product of k elemen-
       tary reflectors

             Q = H(1) H(2) . . . H(k)

       as returned by ZGEQRF. Q is of order M if SIDE = 'L' and of order N  if
       SIDE = 'R'.


ARGUMENTS
       SIDE (input)
                 = 'L': apply Q or Q**H from the Left;
                 = 'R': apply Q or Q**H from the Right.


       TRANS (input)
                 = 'N':  No transpose, apply Q;
                 = 'C':  Conjugate transpose, apply Q**H.


       M (input) The number of rows of the matrix C. M >= 0.


       N (input) The number of columns of the matrix C. N >= 0.


       K (input) The number of elementary reflectors whose product defines the
                 matrix Q.  If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >=  K
                 >= 0.


       A (input) The  i-th  column  must  contain the vector which defines the
                 elementary reflector H(i), for i = 1,2,...,k, as returned  by
                 ZGEQRF  in the first k columns of its array argument A.  A is
                 modified by the routine but restored on exit.


       LDA (input)
                 The leading dimension of the array A.  If SIDE = 'L', LDA  >=
                 max(1,M); if SIDE = 'R', LDA >= max(1,N).


       TAU (input)
                 TAU(i)  must  contain  the  scalar  factor  of the elementary
                 reflector H(i), as returned by ZGEQRF.


       C (input/output)
                 On entry, the M-by-N matrix C.  On exit, C is overwritten  by
                 Q*C or Q**H*C or C*Q**H or C*Q.


       LDC (input)
                 The leading dimension of the array C. LDC >= max(1,M).


       WORK (workspace)
                 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.


       LWORK (input)
                 The  dimension  of  the  array WORK.  If SIDE = 'L', LWORK >=
                 max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum per-
                 formance  LWORK  >=  N*NB if SIDE = 'L', and LWORK >= M*NB if
                 SIDE = 'R', where NB is the optimal blocksize.

                 If LWORK = -1, then a workspace query is assumed; the routine
                 only  calculates  the optimal size of the WORK array, returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.


       INFO (output)
                 = 0:  successful exit;
                 < 0:  if INFO = -i, the i-th argument had an illegal value.




                                  7 Nov 2015                        zunmqr(3P)