dla_gerpvgrw - compute the reciprocal pivot growth factor using the "max absolute element" norm
DOUBLE PRECISION FUNCTION DLA_GERPVGRW(N, NCOLS, A, LDA, AF, LDAF) INTEGER N, NCOLS, LDA, LDAF DOUBLE PRECISION A(LDA,*), AF(LDAF,*) DOUBLE PRECISION FUNCTION DLA_GERPVGRW_64(N, NCOLS, A, LDA, AF, LDAF) INTEGER*8 N, NCOLS, LDA, LDAF DOUBLE PRECISION A(LDA,*), AF(LDAF,*) F95 INTERFACE REAL(8) FUNCTION LA_GERPVGRW(N, NCOLS, A, LDA, AF, LDAF) INTEGER :: N, NCOLS, LDA, LDAF REAL(8), DIMENSION(:,:) :: A, AF REAL(8) FUNCTION LA_GERPVGRW_64(N, NCOLS, A, LDA, AF, LDAF) INTEGER(8) :: N, NCOLS, LDA, LDAF REAL(8), DIMENSION(:,:) :: A, AF C INTERFACE #include <sunperf.h> double dla_gerpvgrw (int n, int ncols, double *a, int lda, double *af, int ldaf); double dla_gerpvgrw_64 (long n, long ncols, double *a, long lda, double * af, long ldaf);
Oracle Solaris Studio Performance Library dla_gerpvgrw(3P)
NAME
dla_gerpvgrw - compute the reciprocal pivot growth factor using the
"max absolute element" norm
SYNOPSIS
DOUBLE PRECISION FUNCTION DLA_GERPVGRW(N, NCOLS, A, LDA, AF, LDAF)
INTEGER N, NCOLS, LDA, LDAF
DOUBLE PRECISION A(LDA,*), AF(LDAF,*)
DOUBLE PRECISION FUNCTION DLA_GERPVGRW_64(N, NCOLS, A, LDA, AF, LDAF)
INTEGER*8 N, NCOLS, LDA, LDAF
DOUBLE PRECISION A(LDA,*), AF(LDAF,*)
F95 INTERFACE
REAL(8) FUNCTION LA_GERPVGRW(N, NCOLS, A, LDA, AF, LDAF)
INTEGER :: N, NCOLS, LDA, LDAF
REAL(8), DIMENSION(:,:) :: A, AF
REAL(8) FUNCTION LA_GERPVGRW_64(N, NCOLS, A, LDA, AF, LDAF)
INTEGER(8) :: N, NCOLS, LDA, LDAF
REAL(8), DIMENSION(:,:) :: A, AF
C INTERFACE
#include <sunperf.h>
double dla_gerpvgrw (int n, int ncols, double *a, int lda, double *af,
int ldaf);
double dla_gerpvgrw_64 (long n, long ncols, double *a, long lda, double
* af, long ldaf);
PURPOSE
dla_gerpvgrw computes the reciprocal pivot growth factor
norm(A)/norm(U). The "max absolute element" norm is used. If this is
much less than 1, the stability of the LU factorization of the (equili-
brated) matrix A could be poor. This also means that the solution X,
estimated condition numbers, and error bounds could be unreliable.
ARGUMENTS
N (input)
N is INTEGER
The number of linear equations, i.e., the order of the matrix
A. N >= 0.
NCOLS (input)
NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.
A (input)
A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the N-by-N matrix A.
LDA (input)
LDA is INTEGER
The leading dimension of the array A.
LDA >= max(1,N).
AF (input)
AF is DOUBLE PRECISION array, dimension (LDAF,N)
The factors L and U from the factorization A=P*L*U as com-
puted by DGETRF.
LDAF (input)
LDAF is INTEGER
The leading dimension of the array AF.
LDAF >= max(1,N).
7 Nov 2015 dla_gerpvgrw(3P)