sgelq2 - compute the LQ factorization of a general rectangular matrix using an unblocked algorithm
SUBROUTINE SGELQ2(M, N, A, LDA, TAU, WORK, INFO) INTEGER INFO, LDA, M, N REAL A(LDA,*), TAU(*),WORK(*) SUBROUTINE SGELQ2_64(M, N, A, LDA, TAU, WORK, INFO) INTEGER*8 INFO, LDA, M, N REAL A(LDA,*), TAU(*), WORK(*) F95 INTERFACE SUBROUTINE GELQ2(M, N, A, LDA, TAU, WORK, INFO) REAL, DIMENSION(:,:) :: A INTEGER :: M, N, LDA, INFO REAL, DIMENSION(:) :: TAU, WORK SUBROUTINE GELQ2_64(M, N, A, LDA, TAU, WORK, INFO) REAL, DIMENSION(:,:) :: A INTEGER(8) :: M, N, LDA, INFO REAL, DIMENSION(:) :: TAU, WORK C INTERFACE #include <sunperf.h> void sgelq2 (int m, int n, float *a, int lda, float *tau, int *info); void sgelq2_64 (long m, long n, float *a, long lda, float *tau, long *info);
Oracle Solaris Studio Performance Library sgelq2(3P)
NAME
sgelq2 - compute the LQ factorization of a general rectangular matrix
using an unblocked algorithm
SYNOPSIS
SUBROUTINE SGELQ2(M, N, A, LDA, TAU, WORK, INFO)
INTEGER INFO, LDA, M, N
REAL A(LDA,*), TAU(*),WORK(*)
SUBROUTINE SGELQ2_64(M, N, A, LDA, TAU, WORK, INFO)
INTEGER*8 INFO, LDA, M, N
REAL A(LDA,*), TAU(*), WORK(*)
F95 INTERFACE
SUBROUTINE GELQ2(M, N, A, LDA, TAU, WORK, INFO)
REAL, DIMENSION(:,:) :: A
INTEGER :: M, N, LDA, INFO
REAL, DIMENSION(:) :: TAU, WORK
SUBROUTINE GELQ2_64(M, N, A, LDA, TAU, WORK, INFO)
REAL, DIMENSION(:,:) :: A
INTEGER(8) :: M, N, LDA, INFO
REAL, DIMENSION(:) :: TAU, WORK
C INTERFACE
#include <sunperf.h>
void sgelq2 (int m, int n, float *a, int lda, float *tau, int *info);
void sgelq2_64 (long m, long n, float *a, long lda, float *tau, long
*info);
PURPOSE
sgelq2 computes an LQ factorization of a real m by n matrix A: A = L *
Q.
ARGUMENTS
M (input)
M is INTEGER
The number of rows of the matrix A. M >= 0.
N (input)
N is INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output)
A is REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and below the diagonal of the array
contain the m by min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).
LDA (input)
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (output)
TAU is REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK (output)
WORK is REAL array, dimension (M)
INFO (output)
INFO is INTEGER
= 0: successful exit,
< 0: if INFO = -i, the i-th argument had an illegal value.
FURTHER DETAILS
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a complex scalar, and v is a complex vector with
v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
A(i,i+1:n), and tau in TAU(i).
7 Nov 2015 sgelq2(3P)