zhpr2 - perform the Hermitian rank 2 operation A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A
SUBROUTINE ZHPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, AP) CHARACTER*1 UPLO DOUBLE COMPLEX ALPHA DOUBLE COMPLEX X(*), Y(*), AP(*) INTEGER N, INCX, INCY SUBROUTINE ZHPR2_64(UPLO, N, ALPHA, X, INCX, Y, INCY, AP) CHARACTER*1 UPLO DOUBLE COMPLEX ALPHA DOUBLE COMPLEX X(*), Y(*), AP(*) INTEGER*8 N, INCX, INCY F95 INTERFACE SUBROUTINE HPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, AP) CHARACTER(LEN=1) :: UPLO COMPLEX(8) :: ALPHA COMPLEX(8), DIMENSION(:) :: X, Y, AP INTEGER :: N, INCX, INCY SUBROUTINE HPR2_64(UPLO, N, ALPHA, X, INCX, Y, INCY, AP) CHARACTER(LEN=1) :: UPLO COMPLEX(8) :: ALPHA COMPLEX(8), DIMENSION(:) :: X, Y, AP INTEGER(8) :: N, INCX, INCY C INTERFACE #include <sunperf.h> void zhpr2(char uplo, int n, doublecomplex *alpha, doublecomplex *x, int incx, doublecomplex *y, int incy, doublecomplex *ap); void zhpr2_64(char uplo, long n, doublecomplex *alpha, doublecomplex *x, long incx, doublecomplex *y, long incy, doublecomplex *ap);
Oracle Solaris Studio Performance Library zhpr2(3P)
NAME
zhpr2 - perform the Hermitian rank 2 operation A := alpha*x*conjg( y'
) + conjg( alpha )*y*conjg( x' ) + A
SYNOPSIS
SUBROUTINE ZHPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
CHARACTER*1 UPLO
DOUBLE COMPLEX ALPHA
DOUBLE COMPLEX X(*), Y(*), AP(*)
INTEGER N, INCX, INCY
SUBROUTINE ZHPR2_64(UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
CHARACTER*1 UPLO
DOUBLE COMPLEX ALPHA
DOUBLE COMPLEX X(*), Y(*), AP(*)
INTEGER*8 N, INCX, INCY
F95 INTERFACE
SUBROUTINE HPR2(UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
CHARACTER(LEN=1) :: UPLO
COMPLEX(8) :: ALPHA
COMPLEX(8), DIMENSION(:) :: X, Y, AP
INTEGER :: N, INCX, INCY
SUBROUTINE HPR2_64(UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
CHARACTER(LEN=1) :: UPLO
COMPLEX(8) :: ALPHA
COMPLEX(8), DIMENSION(:) :: X, Y, AP
INTEGER(8) :: N, INCX, INCY
C INTERFACE
#include <sunperf.h>
void zhpr2(char uplo, int n, doublecomplex *alpha, doublecomplex *x,
int incx, doublecomplex *y, int incy, doublecomplex *ap);
void zhpr2_64(char uplo, long n, doublecomplex *alpha, doublecomplex
*x, long incx, doublecomplex *y, long incy, doublecomplex
*ap);
PURPOSE
zhpr2 performs the Hermitian rank 2 operation A := alpha*x*conjg( y' )
+ conjg( alpha )*y*conjg( x' ) + A where alpha is a scalar, x and y are
n element vectors and A is an n by n hermitian matrix, supplied in
packed form.
ARGUMENTS
UPLO (input)
On entry, UPLO specifies whether the upper or lower triangu-
lar part of the matrix A is supplied in the packed array AP
as follows:
UPLO = 'U' or 'u' The upper triangular part of A is sup-
plied in AP.
UPLO = 'L' or 'l' The lower triangular part of A is sup-
plied in AP.
Unchanged on exit.
N (input)
On entry, N specifies the order of the matrix A. N >= 0.
Unchanged on exit.
ALPHA (input)
On entry, ALPHA specifies the scalar alpha. Unchanged on
exit.
X (input)
( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented
array X must contain the n element vector x. Unchanged on
exit.
INCX (input)
On entry, INCX specifies the increment for the elements of X.
INCX <> 0. Unchanged on exit.
Y (input)
( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented
array Y must contain the n element vector y. Unchanged on
exit.
INCY (input)
On entry, INCY specifies the increment for the elements of Y.
INCY <> 0. Unchanged on exit.
AP (input/output)
( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u',
the array AP must contain the upper triangular part of the
hermitian matrix packed sequentially, column by column, so
that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain
a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the
array AP is overwritten by the upper triangular part of the
updated matrix. Before entry with UPLO = 'L' or 'l', the
array AP must contain the lower triangular part of the hermi-
tian matrix packed sequentially, column by column, so that
AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2,
1 ) and a( 3, 1 ) respectively, and so on. On exit, the array
AP is overwritten by the lower triangular part of the updated
matrix. Note that the imaginary parts of the diagonal ele-
ments need not be set, they are assumed to be zero, and on
exit they are set to zero.
7 Nov 2015 zhpr2(3P)