cla_gbamv - vector operation to calculate error bounds
SUBROUTINE CLA_GBAMV(TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X, INCX, BETA, Y, INCY) REAL ALPHA, BETA INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS COMPLEX AB(LDAB,*), X(*) REAL Y(*) SUBROUTINE CLA_GBAMV_64(TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X, INCX, BETA, Y, INCY) REAL ALPHA, BETA INTEGER*8 INCX, INCY, LDAB, M, N, KL, KU, TRANS COMPLEX AB(LDAB,*), X(*) REAL Y(*) F95 INTERFACE SUBROUTINE LA_GBAMV(TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X, INCX, BETA, Y, INCY) INTEGER :: TRANS, M, N, KL, KU, LDAB, INCX, INCY REAL, DIMENSION(:) :: Y COMPLEX, DIMENSION(:) :: X COMPLEX, DIMENSION(:,:) :: AB REAL :: ALPHA, BETA SUBROUTINE LA_GBAMV_64(TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X, INCX, BETA, Y, INCY) INTEGER(8) :: TRANS, M, N, KL, KU, LDAB, INCX, INCY REAL, DIMENSION(:) :: Y COMPLEX, DIMENSION(:) :: X COMPLEX, DIMENSION(:,:) :: AB REAL :: ALPHA, BETA C INTERFACE #include <sunperf.h> void cla_gbamv (int trans, int m, int n, int kl, int ku, float alpha, floatcomplex *ab, int ldab, floatcomplex *x, int incx, float beta, float *y, int incy); void cla_gbamv_64 (long trans, long m, long n, long kl, long ku, float alpha, floatcomplex *ab, long ldab, floatcomplex *x, long incx, float beta, float *y, long incy);
Oracle Solaris Studio Performance Library cla_gbamv(3P)
NAME
cla_gbamv - perform a matrix-vector operation to calculate error bounds
SYNOPSIS
SUBROUTINE CLA_GBAMV(TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X, INCX,
BETA, Y, INCY)
REAL ALPHA, BETA
INTEGER INCX, INCY, LDAB, M, N, KL, KU, TRANS
COMPLEX AB(LDAB,*), X(*)
REAL Y(*)
SUBROUTINE CLA_GBAMV_64(TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X, INCX,
BETA, Y, INCY)
REAL ALPHA, BETA
INTEGER*8 INCX, INCY, LDAB, M, N, KL, KU, TRANS
COMPLEX AB(LDAB,*), X(*)
REAL Y(*)
F95 INTERFACE
SUBROUTINE LA_GBAMV(TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X, INCX,
BETA, Y, INCY)
INTEGER :: TRANS, M, N, KL, KU, LDAB, INCX, INCY
REAL, DIMENSION(:) :: Y
COMPLEX, DIMENSION(:) :: X
COMPLEX, DIMENSION(:,:) :: AB
REAL :: ALPHA, BETA
SUBROUTINE LA_GBAMV_64(TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X, INCX,
BETA, Y, INCY)
INTEGER(8) :: TRANS, M, N, KL, KU, LDAB, INCX, INCY
REAL, DIMENSION(:) :: Y
COMPLEX, DIMENSION(:) :: X
COMPLEX, DIMENSION(:,:) :: AB
REAL :: ALPHA, BETA
C INTERFACE
#include <sunperf.h>
void cla_gbamv (int trans, int m, int n, int kl, int ku, float alpha,
floatcomplex *ab, int ldab, floatcomplex *x, int incx, float
beta, float *y, int incy);
void cla_gbamv_64 (long trans, long m, long n, long kl, long ku, float
alpha, floatcomplex *ab, long ldab, floatcomplex *x, long
incx, float beta, float *y, long incy);
PURPOSE
cla_gbamv performs one of the matrix-vector operations
y := alpha*abs(A)*abs(x) + beta*abs(y),
or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
where alpha and beta are scalars, x and y are vectors and A is an m by
n matrix.
This function is primarily used in calculating error bounds. To pro-
tect against underflow during evaluation, components in the resulting
vector are perturbed away from zero by (N+1) times the underflow
threshold. To prevent unnecessarily large errors for block-structure
embedded in general matrices, "symbolically" zero components are not
perturbed. A zero entry is considered "symbolic" if all multiplications
involved in computing that entry have at least one zero multiplicand.
ARGUMENTS
TRANS (input)
TRANS is INTEGER
On entry, TRANS specifies the operation to be performed as
follows:
BLAS_NO_TRANS y:=alpha*abs(A)*abs(x)+beta*abs(y)
BLAS_TRANS y:=alpha*abs(A**T)*abs(x)+beta*abs(y)
BLAS_CONJ_TRANS y:=alpha*abs(A**T)*abs(x)+beta*abs(y)
Unchanged on exit.
M (input)
M is INTEGER
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.
Unchanged on exit.
N (input)
N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.
Unchanged on exit.
KL (input)
KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input)
KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.
ALPHA (input)
ALPHA is REAL
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
AB (input)
AB is COMPLEX array, dimension (LDAB,n)
Before entry, the leading m by n part of the array AB must
contain the matrix of coefficients.
Unchanged on exit.
LDAB (input)
LDAB is INTEGER
On entry, LDAB specifies the first dimension of AB as
declared in the calling (sub) program. LDAB must be at least
max( 1, m ).
Unchanged on exit.
X (input)
X is COMPLEX array, dimension
( 1 + (n - 1)*abs(INCX)) when TRANS = 'N' or 'n'
and at least
( 1 + (m - 1)*abs( INCX )) otherwise.
Before entry, the incremented array X must contain the vector
x.
Unchanged on exit.
INCX (input)
INCX is INTEGER
On entry, INCX specifies the increment for the elements of X.
INCX must not be zero.
Unchanged on exit.
BETA (input)
BETA is REAL
On entry, BETA specifies the scalar beta. When BETA is sup-
plied as zero then Y need not be set on input.
Unchanged on exit.
Y (input/output)
Y is REAL array, dimension
( 1 + (m - 1)*abs(INCY)) when TRANS = 'N' or 'n'
and at least
( 1 + (n - 1)*abs(INCY)) otherwise.
Before entry with BETA non-zero, the incremented array Y must
contain the vector y. On exit, Y is overwritten by the
updated vector y.
INCY (input)
INCY is INTEGER
On entry, INCY specifies the increment for the elements of Y.
INCY must not be zero.
Unchanged on exit.
Level 2 Blas routine.
7 Nov 2015 cla_gbamv(3P)