zla_porcond_c - compute the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices
DOUBLE PRECISION FUNCTION ZLA_PORCOND_C(UPLO, N, A, LDA, AF, LDAF, C, CAPPLY, INFO, WORK, RWORK) CHARACTER*1 UPLO LOGICAL CAPPLY INTEGER N, LDA, LDAF, INFO DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), WORK(*) DOUBLE PRECISION C(*), RWORK(*) DOUBLE PRECISION FUNCTION ZLA_PORCOND_C_64(UPLO, N, A, LDA, AF, LDAF, C, CAPPLY, INFO, WORK, RWORK) CHARACTER*1 UPLO LOGICAL CAPPLY INTEGER*8 N, LDA, LDAF, INFO DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), WORK(*) DOUBLE PRECISION C(*), RWORK(*) F95 INTERFACE REAL(8) FUNCTION LA_PORCOND_C(UPLO, N, A, LDA, AF, LDAF, C, CAPPLY, INFO, WORK, RWORK) INTEGER :: N, LDA, LDAF, INFO CHARACTER(LEN=1) :: UPLO COMPLEX(8), DIMENSION(:) :: WORK REAL(8), DIMENSION(:) :: C, RWORK COMPLEX(8), DIMENSION(:,:) :: A, AF REAL(8) FUNCTION LA_PORCOND_C_64(UPLO, N, A, LDA, AF, LDAF, C, CAPPLY, INFO, WORK, RWORK) INTEGER(8) :: N, LDA, LDAF, INFO CHARACTER(LEN=1) :: UPLO COMPLEX(8), DIMENSION(:) :: WORK REAL(8), DIMENSION(:) :: C, RWORK COMPLEX(8), DIMENSION(:,:) :: A, AF C INTERFACE #include <sunperf.h> double zla_porcond_c (char uplo, int n, doublecom- plex *a, int lda, doublecomplex *af, int ldaf, double *c, const int capply, int *info); double zla_porcond_c_64 (char uplo, long n, doublecomplex *a, long lda, doublecomplex *af, long ldaf, double *c, long capply, long *info);
Oracle Solaris Studio Performance Library zla_porcond_c(3P)
NAME
zla_porcond_c - compute the infinity norm condition number of
op(A)*inv(diag(c)) for Hermitian positive-definite matrices
SYNOPSIS
DOUBLE PRECISION FUNCTION ZLA_PORCOND_C(UPLO, N, A, LDA, AF, LDAF, C,
CAPPLY, INFO, WORK, RWORK)
CHARACTER*1 UPLO
LOGICAL CAPPLY
INTEGER N, LDA, LDAF, INFO
DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), WORK(*)
DOUBLE PRECISION C(*), RWORK(*)
DOUBLE PRECISION FUNCTION ZLA_PORCOND_C_64(UPLO, N, A, LDA, AF, LDAF,
C, CAPPLY, INFO, WORK, RWORK)
CHARACTER*1 UPLO
LOGICAL CAPPLY
INTEGER*8 N, LDA, LDAF, INFO
DOUBLE COMPLEX A(LDA,*), AF(LDAF,*), WORK(*)
DOUBLE PRECISION C(*), RWORK(*)
F95 INTERFACE
REAL(8) FUNCTION LA_PORCOND_C(UPLO, N, A, LDA, AF, LDAF, C, CAPPLY,
INFO, WORK, RWORK)
INTEGER :: N, LDA, LDAF, INFO
CHARACTER(LEN=1) :: UPLO
COMPLEX(8), DIMENSION(:) :: WORK
REAL(8), DIMENSION(:) :: C, RWORK
COMPLEX(8), DIMENSION(:,:) :: A, AF
REAL(8) FUNCTION LA_PORCOND_C_64(UPLO, N, A, LDA, AF, LDAF, C, CAPPLY,
INFO, WORK, RWORK)
INTEGER(8) :: N, LDA, LDAF, INFO
CHARACTER(LEN=1) :: UPLO
COMPLEX(8), DIMENSION(:) :: WORK
REAL(8), DIMENSION(:) :: C, RWORK
COMPLEX(8), DIMENSION(:,:) :: A, AF
C INTERFACE
#include <sunperf.h> double zla_porcond_c (char uplo, int n, doublecom-
plex *a, int lda, doublecomplex *af, int ldaf, double *c, const int
capply, int *info);
double zla_porcond_c_64 (char uplo, long n, doublecomplex *a, long lda,
doublecomplex *af, long ldaf, double *c, long capply, long
*info);
PURPOSE
zla_porcond_c Computes the infinity norm condition number of op(A) *
inv(diag(C)) where C is a DOUBLE PRECISION vector
ARGUMENTS
UPLO (input)
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input)
N is INTEGER
The number of linear equations, i.e., the order of the matrix
A. N >= 0.
A (input)
A is COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A
LDA (input)
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF (input)
AF is COMPLEX*16 array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A=U**H*U or A=L*L**H, as computed by ZPOTRF.
LDAF (input)
LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
C (input)
C is DOUBLE PRECISION array, dimension (N)
The vector C in the formula op(A) * inv(diag(C)).
CAPPLY (input)
CAPPLY is LOGICAL
If .TRUE. then access the vector C in the formula above.
INFO (output)
INFO is INTEGER
= 0: Successful exit.
i > 0: The ith argument is invalid.
WORK (input)
WORK is COMPLEX*16 array, dimension (2*N).
Workspace.
RWORK (input)
RWORK is DOUBLE PRECISION array, dimension (N).
Workspace.
7 Nov 2015 zla_porcond_c(3P)