Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

sstegr (3p)

Name

sstegr - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T is a relatively robust representation

Synopsis

SUBROUTINE SSTEGR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER*1 JOBZ, RANGE
INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
INTEGER ISUPPZ(*), IWORK(*)
REAL VL, VU, ABSTOL
REAL D(*), E(*), W(*), Z(LDZ,*), WORK(*)

SUBROUTINE SSTEGR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER*1 JOBZ, RANGE
INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
INTEGER*8 ISUPPZ(*), IWORK(*)
REAL VL, VU, ABSTOL
REAL D(*), E(*), W(*), Z(LDZ,*), WORK(*)




F95 INTERFACE
SUBROUTINE STEGR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER(LEN=1) :: JOBZ, RANGE
INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
REAL :: VL, VU, ABSTOL
REAL, DIMENSION(:) :: D, E, W, WORK
REAL, DIMENSION(:,:) :: Z

SUBROUTINE STEGR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

CHARACTER(LEN=1) :: JOBZ, RANGE
INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
REAL :: VL, VU, ABSTOL
REAL, DIMENSION(:) :: D, E, W, WORK
REAL, DIMENSION(:,:) :: Z




C INTERFACE
#include <sunperf.h>

void sstegr(char jobz, char range, int n, float *d, float *e, float vl,
float  vu,  int  il,  int iu, float abstol, int *m, float *w,
float *z, int ldz, int *isuppz, int *info);

void sstegr_64(char jobz, char range, long n, float *d, float *e, float
vl,  float vu, long il, long iu, float abstol, long *m, float
*w, float *z, long ldz, long *isuppz, long *info);

Description

Oracle Solaris Studio Performance Library                           sstegr(3P)



NAME
       sstegr - (a) Compute T-sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
       is a relatively robust representation


SYNOPSIS
       SUBROUTINE SSTEGR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W,
             Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

       CHARACTER*1 JOBZ, RANGE
       INTEGER N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
       INTEGER ISUPPZ(*), IWORK(*)
       REAL VL, VU, ABSTOL
       REAL D(*), E(*), W(*), Z(LDZ,*), WORK(*)

       SUBROUTINE SSTEGR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
             W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

       CHARACTER*1 JOBZ, RANGE
       INTEGER*8 N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
       INTEGER*8 ISUPPZ(*), IWORK(*)
       REAL VL, VU, ABSTOL
       REAL D(*), E(*), W(*), Z(LDZ,*), WORK(*)




   F95 INTERFACE
       SUBROUTINE STEGR(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,
              W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

       CHARACTER(LEN=1) :: JOBZ, RANGE
       INTEGER :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
       INTEGER, DIMENSION(:) :: ISUPPZ, IWORK
       REAL :: VL, VU, ABSTOL
       REAL, DIMENSION(:) :: D, E, W, WORK
       REAL, DIMENSION(:,:) :: Z

       SUBROUTINE STEGR_64(JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
              M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO)

       CHARACTER(LEN=1) :: JOBZ, RANGE
       INTEGER(8) :: N, IL, IU, M, LDZ, LWORK, LIWORK, INFO
       INTEGER(8), DIMENSION(:) :: ISUPPZ, IWORK
       REAL :: VL, VU, ABSTOL
       REAL, DIMENSION(:) :: D, E, W, WORK
       REAL, DIMENSION(:,:) :: Z




   C INTERFACE
       #include <sunperf.h>

       void sstegr(char jobz, char range, int n, float *d, float *e, float vl,
                 float  vu,  int  il,  int iu, float abstol, int *m, float *w,
                 float *z, int ldz, int *isuppz, int *info);

       void sstegr_64(char jobz, char range, long n, float *d, float *e, float
                 vl,  float vu, long il, long iu, float abstol, long *m, float
                 *w, float *z, long ldz, long *isuppz, long *info);



PURPOSE
       SSTEGR computes selected eigenvalues and, optionally, eigenvectors of a
       real  symmetric tridiagonal matrix T.  Eigenvalues and eigenvectors can
       be selected by specifying either a  range  of  values  or  a  range  of
       indices  for  the  desired eigenvalues. The eigenvalues are computed by
       the dqds algorithm, while orthogonal  eigenvectors  are  computed  from
       various  ``good''  L  D  L^T  representations (also known as Relatively
       Robust Representations). Gram-Schmidt orthogonalization is  avoided  as
       far  as possible. More specifically, the various steps of the algorithm
       are as follows. For the i-th unreduced block of T,
          (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T  is
       a relatively robust representation,
          (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high rel-
       ative accuracy by the dqds algorithm,
          (c) If there is a cluster of  close  eigenvalues,  "choose"  sigma_i
       close to the cluster, and go to step (a),
          (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, com-
       pute the corresponding eigenvector by forming a rank-revealing  twisted
       factorization.
       The desired accuracy of the output can be specified by the input param-
       eter ABSTOL.

       For more details, see "A new O(n^2) algorithm for the symmetric  tridi-
       agonal  eigenvalue/eigenvector  problem", by Inderjit Dhillon, Computer
       Science Division Technical Report No. UCB/CSD-97-971, UC Berkeley,  May
       1997.

       Note  1 : Currently SSTEGR is only set up to find ALL the n eigenvalues
       and eigenvectors of T in O(n^2) time
       Note 2 : Currently the routine SSTEIN is  called  when  an  appropriate
       sigma_i  cannot  be  chosen  in step (c) above. SSTEIN invokes modified
       Gram-Schmidt when eigenvalues are close.
       Note 3 : SSTEGR works only on machines which follow ieee-754  floating-
       point standard in their handling of infinities and NaNs.  Normal execu-
       tion of SSTEGR may create NaNs and infinities and hence may  abort  due
       to  a  floating point exception in environments which do not conform to
       the ieee standard.


ARGUMENTS
       JOBZ (input)
                 = 'N':  Compute eigenvalues only;
                 = 'V':  Compute eigenvalues and eigenvectors.


       RANGE (input)
                 = 'A': all eigenvalues will be found.
                 = 'V': all eigenvalues in the half-open interval (VL,VU] will
                 be found.  = 'I': the IL-th through IU-th eigenvalues will be
                 found.


       N (input) The order of the matrix.  N >= 0.


       D (input/output)
                 On entry, the n diagonal elements of the  tridiagonal  matrix
                 T. On exit, D is overwritten.


       E (input/output)
                 On  entry,  the (n-1) subdiagonal elements of the tridiagonal
                 matrix T in elements 1 to N-1 of E; E(N) need not be set.  On
                 exit, E is overwritten.


       VL (input)
                 If  RANGE='V',  the lower and upper bounds of the interval to
                 be searched for eigenvalues. VL  <  VU.   Not  referenced  if
                 RANGE = 'A' or 'I'.


       VU (input)
                 See the description of VL.


       IL (input)
                 If  RANGE='I', the indices (in ascending order) of the small-
                 est and largest eigenvalues to be returned.  1 <= IL <= IU <=
                 N,  if  N > 0; IL = 1 and IU = 0 if N = 0.  Not referenced if
                 RANGE = 'A' or 'V'.


       IU (input)
                 See the description of IL.


       ABSTOL (input)
                 The absolute error tolerance  for  the  eigenvalues/eigenvec-
                 tors.  IF JOBZ = 'V', the eigenvalues and eigenvectors output
                 have residual norms bounded by ABSTOL, and the  dot  products
                 between  different  eigenvectors  are  bounded  by ABSTOL. If
                 ABSTOL is less than N*EPS*|T|, then N*EPS*|T| will be used in
                 its  place, where EPS is the machine precision and |T| is the
                 1-norm of the tridiagonal matrix. The  eigenvalues  are  com-
                 puted  to  an  accuracy of EPS*|T| irrespective of ABSTOL. If
                 high relative accuracy is important, set  ABSTOL  to  DLAMCH(
                 'Safe  minimum' ).  See Barlow and Demmel "Computing Accurate
                 Eigensystems of Scaled Diagonally Dominant Matrices",  LAPACK
                 Working  Note  #7  for  a discussion of which matrices define
                 their eigenvalues to high relative accuracy.


       M (output)
                 The total number of eigenvalues found.  0  <=  M  <=  N.   If
                 RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.


       W (output)
                 The  first  M  elements  contain  the selected eigenvalues in
                 ascending order.


       Z (output)
                 If JOBZ = 'V', then if INFO = 0, the first  M  columns  of  Z
                 contain  the  orthonormal eigenvectors of the matrix T corre-
                 sponding to the selected eigenvalues, with the i-th column of
                 Z  holding  the  eigenvector associated with W(i).  If JOBZ =
                 'N', then Z is not referenced.  Note: the  user  must  ensure
                 that  at  least max(1,M) columns are supplied in the array Z;
                 if RANGE = 'V', the exact value of M is not known in  advance
                 and an upper bound must be used.


       LDZ (input)
                 The  leading dimension of the array Z.  LDZ >= 1, and if JOBZ
                 = 'V', LDZ >= max(1,N).


       ISUPPZ (output)
                 The support of the eigenvectors in Z, i.e., the indices indi-
                 cating  the  nonzero  elements  in Z. The i-th eigenvector is
                 nonzero only in elements ISUPPZ( 2*i-1 ) through ISUPPZ(  2*i
                 ).


       WORK (workspace)
                 On  exit, if INFO = 0, WORK(1) returns the optimal (and mini-
                 mal) LWORK.


       LWORK (input)
                 The dimension of the array WORK.  LWORK >= max(1,18*N)

                 If LWORK = -1, then a workspace query is assumed; the routine
                 only  calculates  the optimal size of the WORK array, returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.


       IWORK (workspace/output)
                 On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.


       LIWORK (input)
                 The dimension of the array IWORK.  LIWORK >= max(1,10*N)

                 If  LIWORK  = -1, then a workspace query is assumed; the rou-
                 tine only calculates the optimal size  of  the  IWORK  array,
                 returns this value as the first entry of the IWORK array, and
                 no error message related to LIWORK is issued by XERBLA.


       INFO (output)
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument had an illegal value
                 > 0:  if INFO = 1, internal error in SLARRE,  if  INFO  =  2,
                 internal error in SLARRV.

FURTHER DETAILS
       Based on contributions by
          Inderjit Dhillon, IBM Almaden, USA
          Osni Marques, LBNL/NERSC, USA




                                  7 Nov 2015                        sstegr(3P)