sla_gbrpvgrw - compute the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix
REAL FUNCTION SLA_GBRPVGRW(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB) INTEGER N, KL, KU, NCOLS, LDAB, LDAFB REAL AB(LDAB,*), AFB(LDAFB,*) REAL FUNCTION SLA_GBRPVGRW_64(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB) INTEGER*8 N, KL, KU, NCOLS, LDAB, LDAFB REAL AB(LDAB,*), AFB(LDAFB,*) F95 INTERFACE REAL FUNCTION LA_GBRPVGRW(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB) REAL, DIMENSION(:,:) :: AB, AFB INTEGER :: N, KL, KU, NCOLS, LDAB, LDAFB REAL FUNCTION LA_GBRPVGRW_64( N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB ) REAL, DIMENSION(:,:) :: AB, AFB INTEGER(8) :: N, KL, KU, NCOLS, LDAB, LDAFB C INTERFACE #include <sunperf.h> float sla_gbrpvgrw (int n, int kl, int ku, int ncols, float *ab, int ldab, float *afb, int ldafb); float sla_gbrpvgrw_64 (long n, long kl, long ku, long ncols, float *ab, long ldab, float *afb, long ldafb);
Oracle Solaris Studio Performance Library sla_gbrpvgrw(3P)
NAME
sla_gbrpvgrw - compute the reciprocal pivot growth factor
norm(A)/norm(U) for a general banded matrix
SYNOPSIS
REAL FUNCTION SLA_GBRPVGRW(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB)
INTEGER N, KL, KU, NCOLS, LDAB, LDAFB
REAL AB(LDAB,*), AFB(LDAFB,*)
REAL FUNCTION SLA_GBRPVGRW_64(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB)
INTEGER*8 N, KL, KU, NCOLS, LDAB, LDAFB
REAL AB(LDAB,*), AFB(LDAFB,*)
F95 INTERFACE
REAL FUNCTION LA_GBRPVGRW(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB)
REAL, DIMENSION(:,:) :: AB, AFB
INTEGER :: N, KL, KU, NCOLS, LDAB, LDAFB
REAL FUNCTION LA_GBRPVGRW_64( N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB )
REAL, DIMENSION(:,:) :: AB, AFB
INTEGER(8) :: N, KL, KU, NCOLS, LDAB, LDAFB
C INTERFACE
#include <sunperf.h>
float sla_gbrpvgrw (int n, int kl, int ku, int ncols, float *ab, int
ldab, float *afb, int ldafb);
float sla_gbrpvgrw_64 (long n, long kl, long ku, long ncols, float *ab,
long ldab, float *afb, long ldafb);
PURPOSE
sla_gbrpvgrw computes the reciprocal pivot growth factor
norm(A)/norm(U). The "max absolute element" norm is used. If this is
much less than 1, the stability of the LU factorization of the (equili-
brated) matrix A could be poor. This also means that the solution X,
estimated condition numbers, and error bounds could be unreliable.
ARGUMENTS
N (input)
N is INTEGER
The number of linear equations, i.e., the order of the matrix
A. N >= 0.
KL (input)
KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input)
KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NCOLS (input)
NCOLS is INTEGER
The number of columns of the matrix A. NCOLS >= 0.
AB (input)
AB is REAL array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
The j-th column of A is stored in the j-th column of the
array AB as follows:
AB(KU+1+i-j,j)=A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
LDAB (input)
LDAB is INTEGER
The leading dimension of the array AB.
LDAB >= KL+KU+1.
AFB (input)
AFB is REAL array, dimension (LDAFB,N)
Details of the LU factorization of the band matrix A, as com-
puted by SGBTRF. U is stored as an upper triangular band
matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
the multipliers used during the factorization are stored in
rows KL+KU+2 to 2*KL+KU+1.
LDAFB (input)
LDAFB is INTEGER
The leading dimension of the array AFB.
LDAFB >= 2*KL+KU+1.
7 Nov 2015 sla_gbrpvgrw(3P)