sgeequ - by-N matrix A and reduce its condition number
SUBROUTINE SGEEQU(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO) INTEGER M, N, LDA, INFO REAL ROWCND, COLCND, AMAX REAL A(LDA,*), R(*), C(*) SUBROUTINE SGEEQU_64(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO) INTEGER*8 M, N, LDA, INFO REAL ROWCND, COLCND, AMAX REAL A(LDA,*), R(*), C(*) F95 INTERFACE SUBROUTINE GEEQU(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO) INTEGER :: M, N, LDA, INFO REAL :: ROWCND, COLCND, AMAX REAL, DIMENSION(:) :: R, C REAL, DIMENSION(:,:) :: A SUBROUTINE GEEQU_64(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO) INTEGER(8) :: M, N, LDA, INFO REAL :: ROWCND, COLCND, AMAX REAL, DIMENSION(:) :: R, C REAL, DIMENSION(:,:) :: A C INTERFACE #include <sunperf.h> void sgeequ(int m, int n, float *a, int lda, float *r, float *c, float *rowcnd, float *colcnd, float *amax, int *info); void sgeequ_64(long m, long n, float *a, long lda, float *r, float *c, float *rowcnd, float *colcnd, float *amax, long *info);
Oracle Solaris Studio Performance Library sgeequ(3P)
NAME
sgeequ - compute row and column scalings intended to equilibrate an M-
by-N matrix A and reduce its condition number
SYNOPSIS
SUBROUTINE SGEEQU(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
INFO)
INTEGER M, N, LDA, INFO
REAL ROWCND, COLCND, AMAX
REAL A(LDA,*), R(*), C(*)
SUBROUTINE SGEEQU_64(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
INFO)
INTEGER*8 M, N, LDA, INFO
REAL ROWCND, COLCND, AMAX
REAL A(LDA,*), R(*), C(*)
F95 INTERFACE
SUBROUTINE GEEQU(M, N, A, LDA, R, C, ROWCND, COLCND,
AMAX, INFO)
INTEGER :: M, N, LDA, INFO
REAL :: ROWCND, COLCND, AMAX
REAL, DIMENSION(:) :: R, C
REAL, DIMENSION(:,:) :: A
SUBROUTINE GEEQU_64(M, N, A, LDA, R, C, ROWCND, COLCND,
AMAX, INFO)
INTEGER(8) :: M, N, LDA, INFO
REAL :: ROWCND, COLCND, AMAX
REAL, DIMENSION(:) :: R, C
REAL, DIMENSION(:,:) :: A
C INTERFACE
#include <sunperf.h>
void sgeequ(int m, int n, float *a, int lda, float *r, float *c, float
*rowcnd, float *colcnd, float *amax, int *info);
void sgeequ_64(long m, long n, float *a, long lda, float *r, float *c,
float *rowcnd, float *colcnd, float *amax, long *info);
PURPOSE
sgeequ computes row and column scalings intended to equilibrate an M-
by-N matrix A and reduce its condition number. R returns the row scale
factors and C the column scale factors, chosen to try to make the
largest element in each row and column of the matrix B with elements
B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
R(i) and C(j) are restricted to be between SMLNUM = smallest safe num-
ber and BIGNUM = largest safe number. Use of these scaling factors is
not guaranteed to reduce the condition number of A but works well in
practice.
ARGUMENTS
M (input) The number of rows of the matrix A. M >= 0.
N (input) The number of columns of the matrix A. N >= 0.
A (input) The M-by-N matrix whose equilibration factors are to be com-
puted.
LDA (input)
The leading dimension of the array A. LDA >= max(1,M).
R (output)
If INFO = 0 or INFO > M, R contains the row scale factors for
A.
C (output)
If INFO = 0, C contains the column scale factors for A.
ROWCND (output)
If INFO = 0 or INFO > M, ROWCND contains the ratio of the
smallest R(i) to the largest R(i). If ROWCND >= 0.1 and AMAX
is neither too large nor too small, it is not worth scaling
by R.
COLCND (output)
If INFO = 0, COLCND contains the ratio of the smallest C(i)
to the largest C(i). If COLCND >= 0.1, it is not worth scal-
ing by C.
AMAX (output)
Absolute value of largest matrix element. If AMAX is very
close to overflow or very close to underflow, the matrix
should be scaled.
INFO (output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= M: the i-th row of A is exactly zero
> M: the (i-M)-th column of A is exactly zero
7 Nov 2015 sgeequ(3P)