Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

zlarzt (3p)

Name

zlarzt - form the triangular factor T of a complex block reflector H of order > n, which is defined as a product of k elementary reflectors

Synopsis

SUBROUTINE ZLARZT(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

CHARACTER*1 DIRECT, STOREV
DOUBLE COMPLEX V(LDV,*), TAU(*), T(LDT,*)
INTEGER N, K, LDV, LDT

SUBROUTINE ZLARZT_64(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

CHARACTER*1 DIRECT, STOREV
DOUBLE COMPLEX V(LDV,*), TAU(*), T(LDT,*)
INTEGER*8 N, K, LDV, LDT




F95 INTERFACE
SUBROUTINE LARZT(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

CHARACTER(LEN=1) :: DIRECT, STOREV
COMPLEX(8), DIMENSION(:) :: TAU
COMPLEX(8), DIMENSION(:,:) :: V, T
INTEGER :: N, K, LDV, LDT

SUBROUTINE LARZT_64(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

CHARACTER(LEN=1) :: DIRECT, STOREV
COMPLEX(8), DIMENSION(:) :: TAU
COMPLEX(8), DIMENSION(:,:) :: V, T
INTEGER(8) :: N, K, LDV, LDT




C INTERFACE
#include <sunperf.h>

void zlarzt(char direct, char storev, int n, int k,  doublecomplex  *v,
int ldv, doublecomplex *tau, doublecomplex *t, int ldt);

void  zlarzt_64(char direct, char storev, long n, long k, doublecomplex
*v, long ldv,  doublecomplex  *tau,  doublecomplex  *t,  long
ldt);

Description

Oracle Solaris Studio Performance Library                           zlarzt(3P)



NAME
       zlarzt - form the triangular factor T of a complex block reflector H of
       order > n, which is defined as a product of k elementary reflectors


SYNOPSIS
       SUBROUTINE ZLARZT(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

       CHARACTER*1 DIRECT, STOREV
       DOUBLE COMPLEX V(LDV,*), TAU(*), T(LDT,*)
       INTEGER N, K, LDV, LDT

       SUBROUTINE ZLARZT_64(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

       CHARACTER*1 DIRECT, STOREV
       DOUBLE COMPLEX V(LDV,*), TAU(*), T(LDT,*)
       INTEGER*8 N, K, LDV, LDT




   F95 INTERFACE
       SUBROUTINE LARZT(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

       CHARACTER(LEN=1) :: DIRECT, STOREV
       COMPLEX(8), DIMENSION(:) :: TAU
       COMPLEX(8), DIMENSION(:,:) :: V, T
       INTEGER :: N, K, LDV, LDT

       SUBROUTINE LARZT_64(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)

       CHARACTER(LEN=1) :: DIRECT, STOREV
       COMPLEX(8), DIMENSION(:) :: TAU
       COMPLEX(8), DIMENSION(:,:) :: V, T
       INTEGER(8) :: N, K, LDV, LDT




   C INTERFACE
       #include <sunperf.h>

       void zlarzt(char direct, char storev, int n, int k,  doublecomplex  *v,
                 int ldv, doublecomplex *tau, doublecomplex *t, int ldt);

       void  zlarzt_64(char direct, char storev, long n, long k, doublecomplex
                 *v, long ldv,  doublecomplex  *tau,  doublecomplex  *t,  long
                 ldt);



PURPOSE
       zlarzt  forms the triangular factor T of a complex block reflector H of
       order > n, which is defined as a product of k elementary reflectors.

       If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

       If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

       If STOREV = 'C', the vector which defines the elementary reflector H(i)
       is stored in the i-th column of the array V, and

          H  =  I - V * T * V'

       If STOREV = 'R', the vector which defines the elementary reflector H(i)
       is stored in the i-th row of the array V, and

          H  =  I - V' * T * V

       Currently, only STOREV = 'R' and DIRECT = 'B' are supported.


ARGUMENTS
       DIRECT (input)
                 Specifies the order in which the  elementary  reflectors  are
                 multiplied to form the block reflector:
                 = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
                 = 'B': H = H(k) . . . H(2) H(1) (Backward)


       STOREV (input)
                 Specifies how the vectors which define the elementary reflec-
                 tors are stored (see also Further Details):
                 = 'R': rowwise


       N (input) The order of the block reflector H. N >= 0.


       K (input) The order of the triangular factor T (= the number of elemen-
                 tary reflectors). K >= 1.


       V (input) (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R' The matrix V.
                 See further details.


       LDV (input)
                 The leading dimension of the array V.  If STOREV =  'C',  LDV
                 >= max(1,N); if STOREV = 'R', LDV >= K.


       TAU (input)
                 Dimension  (K)  TAU(i)  must contain the scalar factor of the
                 elementary reflector H(i).


       T (output)
                 The k by k triangular factor T of the  block  reflector.   If
                 DIRECT  =  'F',  T is upper triangular; if DIRECT = 'B', T is
                 lower triangular. The rest of the array is not used.


       LDT (input)
                 The leading dimension of the array T. LDT >= K.

FURTHER DETAILS
       Based on contributions by
         A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

       The shape of the matrix V and the storage of the vectors  which  define
       the  H(i) is best illustrated by the following example with n = 5 and k
       = 3. The elements equal to 1 are not stored;  the  corresponding  array
       elements  are  modified  but restored on exit. The rest of the array is
       not used.

       DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':

                                                   ______V_____
              ( v1 v2 v3 )                        /                   ( v1  v2
       v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
          V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
              ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
              ( v1 v2 v3 )
                 .  .  .
                 .  .  .
                 1  .  .
                    1  .
                       1

       DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':

                                                             ______V_____
                 1                                                           /
       .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
                 .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
                 .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
                 .  .  .
              ( v1 v2 v3 )
              ( v1 v2 v3 )
          V = ( v1 v2 v3 )
              ( v1 v2 v3 )
              ( v1 v2 v3 )




                                  7 Nov 2015                        zlarzt(3P)