Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

zgerqf (3p)

Name

zgerqf - N matrix A

Synopsis

SUBROUTINE ZGERQF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
INTEGER M, N, LDA, LDWORK, INFO

SUBROUTINE ZGERQF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
INTEGER*8 M, N, LDA, LDWORK, INFO




F95 INTERFACE
SUBROUTINE GERQF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A
INTEGER :: M, N, LDA, LDWORK, INFO

SUBROUTINE GERQF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A
INTEGER(8) :: M, N, LDA, LDWORK, INFO




C INTERFACE
#include <sunperf.h>

void  zgerqf(int  m,  int  n,  doublecomplex *a, int lda, doublecomplex
*tau, int *info);

void zgerqf_64(long m, long n, doublecomplex *a, long  lda,  doublecom-
plex *tau, long *info);

Description

Oracle Solaris Studio Performance Library                           zgerqf(3P)



NAME
       zgerqf - compute an RQ factorization of a complex M-by-N matrix A


SYNOPSIS
       SUBROUTINE ZGERQF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

       DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
       INTEGER M, N, LDA, LDWORK, INFO

       SUBROUTINE ZGERQF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

       DOUBLE COMPLEX A(LDA,*), TAU(*), WORK(*)
       INTEGER*8 M, N, LDA, LDWORK, INFO




   F95 INTERFACE
       SUBROUTINE GERQF(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

       COMPLEX(8), DIMENSION(:) :: TAU, WORK
       COMPLEX(8), DIMENSION(:,:) :: A
       INTEGER :: M, N, LDA, LDWORK, INFO

       SUBROUTINE GERQF_64(M, N, A, LDA, TAU, WORK, LDWORK, INFO)

       COMPLEX(8), DIMENSION(:) :: TAU, WORK
       COMPLEX(8), DIMENSION(:,:) :: A
       INTEGER(8) :: M, N, LDA, LDWORK, INFO




   C INTERFACE
       #include <sunperf.h>

       void  zgerqf(int  m,  int  n,  doublecomplex *a, int lda, doublecomplex
                 *tau, int *info);

       void zgerqf_64(long m, long n, doublecomplex *a, long  lda,  doublecom-
                 plex *tau, long *info);



PURPOSE
       zgerqf computes an RQ factorization of a complex M-by-N matrix A: A = R
       * Q.


ARGUMENTS
       M (input) The number of rows of the matrix A.  M >= 0.


       N (input) The number of columns of the matrix A.  N >= 0.


       A (input/output)
                 On entry, the M-by-N matrix A.  On exit, if m <= n, the upper
                 triangle  of  the subarray A(1:m,n-m+1:n) contains the M-by-M
                 upper triangular matrix R; if m >= n,  the  elements  on  and
                 above  the  (m-n)-th  subdiagonal  contain  the  M-by-N upper
                 trapezoidal matrix R; the remaining elements, with the  array
                 TAU,  represent the unitary matrix Q as a product of min(m,n)
                 elementary reflectors (see Further Details).


       LDA (input)
                 The leading dimension of the array A.  LDA >= max(1,M).


       TAU (output)
                 The scalar factors of the elementary reflectors (see  Further
                 Details).


       WORK (workspace)
                 On exit, if INFO = 0, WORK(1) returns the optimal LDWORK.


       LDWORK (input)
                 The  dimension  of  the array WORK.  LDWORK >= max(1,M).  For
                 optimum performance LDWORK >= M*NB, where NB is  the  optimal
                 blocksize.

                 If  LDWORK  = -1, then a workspace query is assumed; the rou-
                 tine only calculates the optimal  size  of  the  WORK  array,
                 returns  this value as the first entry of the WORK array, and
                 no error message related to LDWORK is issued by XERBLA.


       INFO (output)
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument had an illegal value

FURTHER DETAILS
       The matrix Q is represented as a product of elementary reflectors

          Q = H(1)' H(2)' . . . H(k)', where k = min(m,n).

       Each H(i) has the form

          H(i) = I - tau * v * v'

       where tau is a complex scalar, and v is  a  complex  vector  with  v(n-
       k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on exit in
       A(m-k+i,1:n-k+i-1), and tau in TAU(i).




                                  7 Nov 2015                        zgerqf(3P)