Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

dbbcsd (3p)

Name

dbbcsd - agonal-block form

Synopsis

SUBROUTINE DBBCSD(JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,  THETA,
PHI,  U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D, B11E,
B12D, B12E, B21D, B21E, B22D, B22E, WORK, LWORK, INFO)


CHARACTER*1 JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q

DOUBLE PRECISION B11D(*), B11E(*), B12D(*), B12E(*), B21D(*),  B21E(*),
B22D(*),B22E(*), PHI(*), THETA(*), WORK(*)

DOUBLE PRECISION U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*)


SUBROUTINE  DBBCSD_64(JOBU1,  JOBU2,  JOBV1T,  JOBV2T,  TRANS, M, P, Q,
THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,
B11E, B12D, B12E, B21D, B21E, B22D, B22E, WORK, LWORK, INFO)


CHARACTER*1 JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

INTEGER*8 INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q

DOUBLE  PRECISION B11D(*), B11E(*), B12D(*), B12E(*), B21D(*), B21E(*),
B22D(*), B22E(*), PHI(*), THETA(*), WORK(*)

DOUBLE PRECISION U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*)


F95 INTERFACE
SUBROUTINE BBCSD(JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P,  Q,  THETA,
PHI,  U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D, B11E,
B12D, B12E, B21D, B21E, B22D, B22E, WORK, LWORK, INFO)


INTEGER :: M, P, Q, LDU1, LDU2, LDV1T, LDV2T, LWORK, INFO

CHARACTER(LEN=1) :: JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

REAL(8), DIMENSION(:,:) :: U1, U2, V1T, V2T

REAL(8), DIMENSION(:) :: THETA, PHI,  B11D,  B11E,  B12D,  B12E,  B21D,
B21E, B22D, B22E, WORK


SUBROUTINE  BBCSD_64(JOBU1,  JOBU2,  JOBV1T,  JOBV2T,  TRANS,  M, P, Q,
THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,
B11E, B12D, B12E, B21D, B21E, B22D, B22E, WORK, LWORK, INFO)


INTEGER(8) :: M, P, Q, LDU1, LDU2, LDV1T, LDV2T, LWORK, INFO

CHARACTER(LEN=1) :: JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

REAL(8), DIMENSION(:,:) :: U1, U2, V1T, V2T

REAL(8),  DIMENSION(:)  ::  THETA,  PHI,  B11D, B11E, B12D, B12E, B21D,
B21E, B22D, B22E, WORK


C INTERFACE
#include <sunperf.h>

void dbbcsd (char jobu1, char jobu2, char  jobv1t,  char  jobv2t,  char
trans,  int m, int p, int q, double *theta, double *phi, dou-
ble *u1, int ldu1, double *u2, int  ldu2,  double  *v1t,  int
ldv1t,  double  *v2t,  int ldv2t, double *b11d, double *b11e,
double *b12d, double *b12e, double *b21d, double *b21e,  dou-
ble *b22d, double *b22e, int *info);


void  dbbcsd_64 (char jobu1, char jobu2, char jobv1t, char jobv2t, char
trans, long m, long p, long q, double  *theta,  double  *phi,
double  *u1,  long  ldu1, double *u2, long ldu2, double *v1t,
long ldv1t, double *v2t, long  ldv2t,  double  *b11d,  double
*b11e,  double  *b12d,  double  *b12e,  double  *b21d, double
*b21e, double *b22d, double *b22e, long *info);

Description

Oracle Solaris Studio Performance Library                           dbbcsd(3P)



NAME
       dbbcsd  - compute the CS decomposition of an orthogonal matrix in bidi-
       agonal-block form


SYNOPSIS
       SUBROUTINE DBBCSD(JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,  THETA,
                 PHI,  U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D, B11E,
                 B12D, B12E, B21D, B21E, B22D, B22E, WORK, LWORK, INFO)


       CHARACTER*1 JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

       INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q

       DOUBLE PRECISION B11D(*), B11E(*), B12D(*), B12E(*), B21D(*),  B21E(*),
                 B22D(*),B22E(*), PHI(*), THETA(*), WORK(*)

       DOUBLE PRECISION U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*)


       SUBROUTINE  DBBCSD_64(JOBU1,  JOBU2,  JOBV1T,  JOBV2T,  TRANS, M, P, Q,
                 THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,
                 B11E, B12D, B12E, B21D, B21E, B22D, B22E, WORK, LWORK, INFO)


       CHARACTER*1 JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

       INTEGER*8 INFO, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q

       DOUBLE  PRECISION B11D(*), B11E(*), B12D(*), B12E(*), B21D(*), B21E(*),
                 B22D(*), B22E(*), PHI(*), THETA(*), WORK(*)

       DOUBLE PRECISION U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*)


   F95 INTERFACE
       SUBROUTINE BBCSD(JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P,  Q,  THETA,
                 PHI,  U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D, B11E,
                 B12D, B12E, B21D, B21E, B22D, B22E, WORK, LWORK, INFO)


       INTEGER :: M, P, Q, LDU1, LDU2, LDV1T, LDV2T, LWORK, INFO

       CHARACTER(LEN=1) :: JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

       REAL(8), DIMENSION(:,:) :: U1, U2, V1T, V2T

       REAL(8), DIMENSION(:) :: THETA, PHI,  B11D,  B11E,  B12D,  B12E,  B21D,
                 B21E, B22D, B22E, WORK


       SUBROUTINE  BBCSD_64(JOBU1,  JOBU2,  JOBV1T,  JOBV2T,  TRANS,  M, P, Q,
                 THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D,
                 B11E, B12D, B12E, B21D, B21E, B22D, B22E, WORK, LWORK, INFO)


       INTEGER(8) :: M, P, Q, LDU1, LDU2, LDV1T, LDV2T, LWORK, INFO

       CHARACTER(LEN=1) :: JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS

       REAL(8), DIMENSION(:,:) :: U1, U2, V1T, V2T

       REAL(8),  DIMENSION(:)  ::  THETA,  PHI,  B11D, B11E, B12D, B12E, B21D,
                 B21E, B22D, B22E, WORK


   C INTERFACE
       #include <sunperf.h>

       void dbbcsd (char jobu1, char jobu2, char  jobv1t,  char  jobv2t,  char
                 trans,  int m, int p, int q, double *theta, double *phi, dou-
                 ble *u1, int ldu1, double *u2, int  ldu2,  double  *v1t,  int
                 ldv1t,  double  *v2t,  int ldv2t, double *b11d, double *b11e,
                 double *b12d, double *b12e, double *b21d, double *b21e,  dou-
                 ble *b22d, double *b22e, int *info);


       void  dbbcsd_64 (char jobu1, char jobu2, char jobv1t, char jobv2t, char
                 trans, long m, long p, long q, double  *theta,  double  *phi,
                 double  *u1,  long  ldu1, double *u2, long ldu2, double *v1t,
                 long ldv1t, double *v2t, long  ldv2t,  double  *b11d,  double
                 *b11e,  double  *b12d,  double  *b12e,  double  *b21d, double
                 *b21e, double *b22d, double *b22e, long *info);


PURPOSE
       dbbcsd computes the CS decomposition of an orthogonal matrix in bidiag-
       onal-block form,


           [ B11 | B12 0  0 ]
           [  0  |  0 -I  0 ]
       X = [----------------]
           [ B21 | B22 0  0 ]
           [  0  |  0  0  I ]

                                     [  C | -S  0  0 ]
                         [ U1 |    ] [  0 |  0 -I  0 ] [ V1 |    ]**T
                       = [---------] [---------------] [---------]   .
                         [    | U2 ] [  S |  C  0  0 ] [    | V2 ]
                                     [  0 |  0  0  I ]

       X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
       than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
       transposed and/or permuted. This can be done in constant time using
       the TRANS and SIGNS options. See DORCSD for details.)

       The bidiagonal matrices B11, B12, B21, and B22 are represented
       implicitly by angles THETA(1:Q) and PHI(1:Q-1).

       The orthogonal matrices U1, U2, V1T, and V2T are input/output.
       The input matrices are pre- or post-multiplied by the appropriate
       singular vector matrices.


ARGUMENTS
       JOBU1 (input)
                 JOBU1 is CHARACTER
                 = 'Y':      U1 is updated;
                 otherwise:  U1 is not updated.


       JOBU2 (input)
                 JOBU2 is CHARACTER
                 = 'Y':      U2 is updated;
                 otherwise:  U2 is not updated.


       JOBV1T (input)
                 JOBV1T is CHARACTER
                 = 'Y':      V1T is updated;
                 otherwise:  V1T is not updated.


       JOBV2T (input)
                 JOBV2T is CHARACTER
                 = 'Y':      V2T is updated;
                 otherwise:  V2T is not updated.


       TRANS (input)
                 TRANS is CHARACTER
                 =  'T':       X, U1, U2, V1T, and V2T are stored in row-major
                 order;
                 otherwise:  X, U1, U2, V1T, and V2T  are  stored  in  column-
                 major order.


       M (input)
                 M is INTEGER
                 The number of rows and columns in X, the orthogonal matrix in
                 bidiagonal-block form.


       P (input)
                 P is INTEGER
                 The number of rows in the top-left block of X.
                 0 <= P <= M.


       Q (input)
                 Q is INTEGER
                 The number of columns in the top-left block of X.
                 0 <= Q <= MIN(P,M-P,M-Q).


       THETA (input/output)
                 THETA is DOUBLE PRECISION array, dimension (Q)
                 On entry, the angles THETA(1),...,THETA(Q) that,  along  with
                 PHI(1),  ...,PHI(Q-1),  define the matrix in bidiagonal-block
                 form. On exit, the angles whose cosines and sines define  the
                 diagonal blocks in the CS decomposition.


       PHI (input/output)
                 PHI is DOUBLE PRECISION array, dimension (Q-1)
                 The    angles    PHI(1),...,PHI(Q-1)    that,    along   with
                 THETA(1),...,THETA(Q), define the matrix in  bidiagonal-block
                 form.


       U1 (input/output)
                 U1 is DOUBLE PRECISION array, dimension (LDU1,P)
                 On  entry, an LDU1-by-P matrix. On exit, U1 is postmultiplied
                 by the left singular vector matrix common to [ B11 ; 0 ]  and
                 [ B12 0 0 ; 0 -I 0 0 ].


       LDU1 (input)
                 LDU1 is INTEGER
                 The leading dimension of the array U1.


       U2 (input/output)
                 U2 is DOUBLE PRECISION array, dimension (LDU2,M-P)
                 On  entry, an LDU2-by-(M-P) matrix. On exit, U2 is postmulti-
                 plied by the left singular vector matrix common to [ B21 ;  0
                 ] and [ B22 0 0 ; 0 0 I ].


       LDU2 (input)
                 LDU2 is INTEGER
                 The leading dimension of the array U2.


       V1T (input/output)
                 V1T is DOUBLE PRECISION array, dimension (LDV1T,Q)
                 On  entry, a LDV1T-by-Q matrix. On exit, V1T is premultiplied
                 by the transpose of the right singular vector  matrix  common
                 to [ B11 ; 0 ] and [ B21 ; 0 ].


       LDV1T (input)
                 LDV1T is INTEGER
                 The leading dimension of the array V1T.


       V2T (input/output)
                 V2T is DOUBLE PRECISION array, dimenison (LDV2T,M-Q)
                 On  entry, a LDV2T-by-(M-Q) matrix. On exit, V2T is premulti-
                 plied by the transpose of the right  singular  vector  matrix
                 common to [ B12 0 0 ; 0 -I 0 ] and [ B22 0 0 ; 0 0 I ].


       LDV2T (input)
                 LDV2T is INTEGER
                 The leading dimension of the array V2T.


       B11D (output)
                 B11D is DOUBLE PRECISION array, dimension (Q)
                 When DBBCSD converges, B11D contains the cosines of THETA(1),
                 ..., THETA(Q). If DBBCSD fails to converge,  then  B11D  con-
                 tains the diagonal of the partially reduced top-left block.


       B11E (output)
                 B11E is DOUBLE PRECISION array, dimension (Q-1)
                 When  DBBCSD  converges, B11E contains zeros. If DBBCSD fails
                 to converge, then B11E contains the superdiagonal of the par-
                 tially reduced top-left block.


       B12D (output)
                 B12D is DOUBLE PRECISION array, dimension (Q)
                 When  DBBCSD  converges,  B12D contains the negative sines of
                 THETA(1), ..., THETA(Q).  If DBBCSD fails to  converge,  then
                 B12D contains the diagonal of the partially reduced top-right
                 block.


       B12E (output)
                 B12E is DOUBLE PRECISION array, dimension (Q-1)
                 When DBBCSD converges, B12E contains zeros. If  DBBCSD  fails
                 to  converge,  then B12E contains the subdiagonal of the par-
                 tially reduced top-right block.


       B21D (output)
                 B21D is DOUBLE PRECISION  array, dimension (Q)
                 When DBBCSD converges, B21D contains the  negative  sines  of
                 THETA(1),  ...,  THETA(Q).  If DBBCSD fails to converge, then
                 B21D contains the diagonal of the partially  reduced  bottom-
                 left block.


       B21E (output)
                 B21E is DOUBLE PRECISION  array, dimension (Q-1)
                 When  DBBCSD  converges, B21E contains zeros. If DBBCSD fails
                 to converge, then B21E contains the subdiagonal of  the  par-
                 tially reduced bottom-left block.


       B22D (output)
                 B22D is DOUBLE PRECISION  array, dimension (Q)
                 When  DBBCSD  converges,  B22D contains the negative sines of
                 THETA(1), ..., THETA(Q).  If DBBCSD fails to  converge,  then
                 B22D  contains  the diagonal of the partially reduced bottom-
                 right block.


       B22E (output)
                 B22E is DOUBLE PRECISION  array, dimension (Q-1)
                 When DBBCSD converges, B22E contains zeros. If  DBBCSD  fails
                 to  converge,  then B22E contains the subdiagonal of the par-
                 tially reduced bottom-right block.


       WORK (output)
                 WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.


       LWORK (input)
                 LWORK is INTEGER
                 The dimension of the array WORK.
                 LWORK >= MAX(1,8*Q).
                 If LWORK = -1, then a workspace query is assumed; the routine
                 only  calculates  the optimal size of the WORK array, returns
                 this value as the first entry of the work array, and no error
                 message related to LWORK is issued by XERBLA.


       INFO (output)
                 INFO is INTEGER
                 = 0:  successful exit;
                 < 0:  if INFO = -i, the i-th argument had an illegal value;
                 >  0:   if DBBCSD did not converge, INFO specifies the number
                 of nonzero entries in PHI, and B11D, B11E, etc., contain  the
                 partially reduced matrix.



                                  7 Nov 2015                        dbbcsd(3P)