Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

ctgsja (3p)

Name

ctgsja - compute the generalized singular value decomposition (GSVD) of two complex upper triangular (or trapezoidal) matrices A and B

Synopsis

SUBROUTINE CTGSJA(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE,
INFO)

CHARACTER*1 JOBU, JOBV, JOBQ
COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*), WORK(*)
INTEGER M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
REAL TOLA, TOLB
REAL ALPHA(*), BETA(*)

SUBROUTINE CTGSJA_64(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE,
INFO)

CHARACTER*1 JOBU, JOBV, JOBQ
COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*), WORK(*)
INTEGER*8 M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
REAL TOLA, TOLB
REAL ALPHA(*), BETA(*)




F95 INTERFACE
SUBROUTINE TGSJA(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
WORK, NCYCLE, INFO)

CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
COMPLEX, DIMENSION(:) :: WORK
COMPLEX, DIMENSION(:,:) :: A, B, U, V, Q
INTEGER :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
REAL :: TOLA, TOLB
REAL, DIMENSION(:) :: ALPHA, BETA

SUBROUTINE TGSJA_64(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA,
B, LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
WORK, NCYCLE, INFO)

CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
COMPLEX, DIMENSION(:) :: WORK
COMPLEX, DIMENSION(:,:) :: A, B, U, V, Q
INTEGER(8) :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
REAL :: TOLA, TOLB
REAL, DIMENSION(:) :: ALPHA, BETA




C INTERFACE
#include <sunperf.h>

void ctgsja(char jobu, char jobv, char jobq, int m, int p, int  n,  int
k,  int  l,  complex  *a, int lda, complex *b, int ldb, float
tola, float tolb, float *alpha, float *beta, complex *u,  int
ldu,  complex  *v, int ldv, complex *q, int ldq, int *ncycle,
int *info);

void ctgsja_64(char jobu, char jobv, char jobq, long m, long p, long n,
long  k,  long l, complex *a, long lda, complex *b, long ldb,
float tola, float tolb, float *alpha,  float  *beta,  complex
*u,  long  ldu,  complex  *v, long ldv, complex *q, long ldq,
long *ncycle, long *info);

Description

Oracle Solaris Studio Performance Library                           ctgsja(3P)



NAME
       ctgsja - compute the generalized singular value decomposition (GSVD) of
       two complex upper triangular (or trapezoidal) matrices A and B


SYNOPSIS
       SUBROUTINE CTGSJA(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE,
             INFO)

       CHARACTER*1 JOBU, JOBV, JOBQ
       COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*), WORK(*)
       INTEGER M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
       REAL TOLA, TOLB
       REAL ALPHA(*), BETA(*)

       SUBROUTINE CTGSJA_64(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE,
             INFO)

       CHARACTER*1 JOBU, JOBV, JOBQ
       COMPLEX A(LDA,*), B(LDB,*), U(LDU,*), V(LDV,*), Q(LDQ,*), WORK(*)
       INTEGER*8 M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
       REAL TOLA, TOLB
       REAL ALPHA(*), BETA(*)




   F95 INTERFACE
       SUBROUTINE TGSJA(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
              LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
              WORK, NCYCLE, INFO)

       CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
       COMPLEX, DIMENSION(:) :: WORK
       COMPLEX, DIMENSION(:,:) :: A, B, U, V, Q
       INTEGER :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
       REAL :: TOLA, TOLB
       REAL, DIMENSION(:) :: ALPHA, BETA

       SUBROUTINE TGSJA_64(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA,
              B, LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
              WORK, NCYCLE, INFO)

       CHARACTER(LEN=1) :: JOBU, JOBV, JOBQ
       COMPLEX, DIMENSION(:) :: WORK
       COMPLEX, DIMENSION(:,:) :: A, B, U, V, Q
       INTEGER(8) :: M, P, N, K, L, LDA, LDB, LDU, LDV, LDQ, NCYCLE, INFO
       REAL :: TOLA, TOLB
       REAL, DIMENSION(:) :: ALPHA, BETA




   C INTERFACE
       #include <sunperf.h>

       void ctgsja(char jobu, char jobv, char jobq, int m, int p, int  n,  int
                 k,  int  l,  complex  *a, int lda, complex *b, int ldb, float
                 tola, float tolb, float *alpha, float *beta, complex *u,  int
                 ldu,  complex  *v, int ldv, complex *q, int ldq, int *ncycle,
                 int *info);

       void ctgsja_64(char jobu, char jobv, char jobq, long m, long p, long n,
                 long  k,  long l, complex *a, long lda, complex *b, long ldb,
                 float tola, float tolb, float *alpha,  float  *beta,  complex
                 *u,  long  ldu,  complex  *v, long ldv, complex *q, long ldq,
                 long *ncycle, long *info);



PURPOSE
       ctgsja computes the generalized singular value decomposition (GSVD)  of
       two complex upper triangular (or trapezoidal) matrices A and B.

       On entry, it is assumed that matrices A and B have the following forms,
       which may be obtained by the preprocessing  subroutine  CGGSVP  from  a
       general M-by-N matrix A and P-by-N matrix B:

                    N-K-L  K    L
          A =    K ( 0    A12  A13 ) if M-K-L >= 0;
                 L ( 0     0   A23 )
             M-K-L ( 0     0    0  )

                  N-K-L  K    L
          A =  K ( 0    A12  A13 ) if M-K-L < 0;
             M-K ( 0     0   A23 )

                  N-K-L  K    L
          B =  L ( 0     0   B13 )
             P-L ( 0     0    0  )

       where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular upper
       triangular; A23 is L-by-L upper triangular if M-K-L >= 0, otherwise A23
       is (M-K)-by-L upper trapezoidal.

       On exit,

              U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R ),

       where  U, V and Q are unitary matrices, Z' denotes the conjugate trans-
       pose of Z, R is a nonsingular upper triangular matrix, and  D1  and  D2
       are ``diagonal'' matrices, which are of the following structures:

       If M-K-L >= 0,

                           K  L
              D1 =     K ( I  0 )
                       L ( 0  C )
                   M-K-L ( 0  0 )

                          K  L
              D2 = L   ( 0  S )
                   P-L ( 0  0 )

                      N-K-L  K    L
         ( 0 R ) = K (  0   R11  R12 ) K
                   L (  0    0   R22 ) L

       where

         C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
         S = diag( BETA(K+1),  ... , BETA(K+L) ),
         C**2 + S**2 = I.

         R is stored in A(1:K+L,N-K-L+1:N) on exit.

       If M-K-L < 0,

                      K M-K K+L-M
           D1 =   K ( I  0    0   )
                M-K ( 0  C    0   )

                        K M-K K+L-M
           D2 =   M-K ( 0  S    0   )
                K+L-M ( 0  0    I   )
                  P-L ( 0  0    0   )

                      N-K-L  K   M-K  K+L-M

                 M-K ( 0     0   R22  R23  )
               K+L-M ( 0     0    0   R33  )

       where
       C = diag( ALPHA(K+1), ... , ALPHA(M) ),
       S = diag( BETA(K+1),  ... , BETA(M) ),
       C**2 + S**2 = I.

       R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
           (  0  R22 R23 )
       in B(M-K+1:L,N+M-K-L+1:N) on exit.

       The  computation  of  the  unitary transformation matrices U, V or Q is
       optional.  These matrices may either be formed explicitly, or they  may
       be postmultiplied into input matrices U1, V1, or Q1.

       CTGSJA  essentially  uses a variant of Kogbetliantz algorithm to reduce
       min(L,M-K)-by-L triangular  (or  trapezoidal)  matrix  A23  and  L-by-L
       matrix B13 to the form:
          U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
       where  U1, V1 and Q1 are unitary matrix, and Z' is the conjugate trans-
       pose of Z.  C1 and S1 are diagonal matrices satisfying
          C1**2 + S1**2 = I,
       and R1 is an L-by-L nonsingular upper triangular matrix.


ARGUMENTS
       JOBU (input)
                 = 'U':  U must contain a unitary matrix U1 on entry, and  the
                 product  U1*U  is  returned;  = 'I':  U is initialized to the
                 unit matrix, and the unitary matrix U is returned; = 'N':   U
                 is not computed.


       JOBV (input)
                 =  'V':  V must contain a unitary matrix V1 on entry, and the
                 product V1*V is returned; = 'I':  V  is  initialized  to  the
                 unit  matrix, and the unitary matrix V is returned; = 'N':  V
                 is not computed.


       JOBQ (input)
                 = 'Q':  Q must contain a unitary matrix Q1 on entry, and  the
                 product  Q1*Q  is  returned;  = 'I':  Q is initialized to the
                 unit matrix, and the unitary matrix Q is returned; = 'N':   Q
                 is not computed.


       M (input) The number of rows of the matrix A.  M >= 0.


       P (input) The number of rows of the matrix B.  P >= 0.


       N (input) The number of columns of the matrices A and B.  N >= 0.


       K (input) K and L specify the subblocks in the input matrices A and B:
                 A23  = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,,N-L+1:N) of
                 A and B, whose GSVD is going to be computed by  CTGSJA.   See
                 the Further Details section below.


       L (input) See the description of K.


       A (input/output)
                 On   entry,   the   M-by-N   matrix   A.    On   exit,   A(N-
                 K+1:N,1:MIN(K+L,M) ) contains the triangular matrix R or part
                 of R.  See Purpose for details.


       LDA (input)
                 The leading dimension of the array A. LDA >= max(1,M).


       B (input/output)
                 On  entry,  the P-by-N matrix B.  On exit, if necessary, B(M-
                 K+1:L,N+M-K-L+1:N) contains a part of  R.   See  Purpose  for
                 details.


       LDB (input)
                 The leading dimension of the array B. LDB >= max(1,P).


       TOLA (input)
                 TOLA  and  TOLB  are the convergence criteria for the Jacobi-
                 Kogbetliantz iteration procedure.  Generally,  they  are  the
                 same   as   used  in  the  preprocessing  step,  say  TOLA  =
                 MAX(M,N)*norm(A)*MACHEPS, TOLB = MAX(P,N)*norm(B)*MACHEPS.


       TOLB (input)
                 See the description of TOLA.


       ALPHA (output)
                 On exit, ALPHA and  BETA  contain  the  generalized  singular
                 value pairs of A and B; ALPHA(1:K) = 1,
                 BETA(1:K)  = 0, and if M-K-L >= 0, ALPHA(K+1:K+L) = diag(C),
                 BETA(K+1:K+L)   =  diag(S), or if M-K-L < 0, ALPHA(K+1:M)= C,
                 ALPHA(M+1:K+L)= 0
                 BETA(K+1:M) = S, BETA(M+1:K+L) = 1.  Furthermore, if K+L < N,
                 ALPHA(K+L+1:N) = 0
                 BETA(K+L+1:N)  = 0.


       BETA (output)
                 See the description of ALPHA.


       U (input) On  entry, if JOBU = 'U', U must contain a matrix U1 (usually
                 the unitary matrix returned by CGGSVP).  On exit, if  JOBU  =
                 'I',  U  contains the unitary matrix U; if JOBU = 'U', U con-
                 tains the product U1*U.  If JOBU = 'N', U is not  referenced.


       LDU (input)
                 The leading dimension of the array U. LDU >= max(1,M) if JOBU
                 = 'U'; LDU >= 1 otherwise.


       V (input) On entry, if JOBV = 'V', V must contain a matrix V1  (usually
                 the  unitary  matrix returned by CGGSVP).  On exit, if JOBV =
                 'I', V contains the unitary matrix V; if JOBV = 'V',  V  con-
                 tains  the product V1*V.  If JOBV = 'N', V is not referenced.


       LDV (input)
                 The leading dimension of the array V. LDV >= max(1,P) if JOBV
                 = 'V'; LDV >= 1 otherwise.


       Q (input) On  entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
                 the unitary matrix returned by CGGSVP).  On exit, if  JOBQ  =
                 'I',  Q  contains the unitary matrix Q; if JOBQ = 'Q', Q con-
                 tains the product Q1*Q.  If JOBQ = 'N', Q is not  referenced.


       LDQ (input)
                 The leading dimension of the array Q. LDQ >= max(1,N) if JOBQ
                 = 'Q'; LDQ >= 1 otherwise.


       WORK (workspace)
                 dimension(2*N)

       NCYCLE (output)
                 The number of cycles required for convergence.


       INFO (output)
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument had an illegal value.
                 = 1:  the procedure does not converge after MAXIT cycles.




                                  7 Nov 2015                        ctgsja(3P)