Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

cunmbr (3p)

Name

cunmbr - N matrix C with Q*C or Q**H*C or C*Q**H or C*Q or P*C or P**H*C or C*P or C*P**H

Synopsis

SUBROUTINE CUNMBR(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)

CHARACTER*1 VECT, SIDE, TRANS
COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER M, N, K, LDA, LDC, LWORK, INFO

SUBROUTINE CUNMBR_64(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)

CHARACTER*1 VECT, SIDE, TRANS
COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO




F95 INTERFACE
SUBROUTINE UNMBR(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
LDC, WORK, LWORK, INFO)

CHARACTER(LEN=1) :: VECT, SIDE, TRANS
COMPLEX, DIMENSION(:) :: TAU, WORK
COMPLEX, DIMENSION(:,:) :: A, C
INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

SUBROUTINE UNMBR_64(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU,
C, LDC, WORK, LWORK, INFO)

CHARACTER(LEN=1) :: VECT, SIDE, TRANS
COMPLEX, DIMENSION(:) :: TAU, WORK
COMPLEX, DIMENSION(:,:) :: A, C
INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO




C INTERFACE
#include <sunperf.h>

void cunmbr(char vect, char side, char trans, int m, int n, int k, com-
plex  *a,  int  lda,  complex  *tau, complex *c, int ldc, int
*info);

void cunmbr_64(char vect, char side, char trans, long m, long  n,  long
k,  complex *a, long lda, complex *tau, complex *c, long ldc,
long *info);

Description

Oracle Solaris Studio Performance Library                           cunmbr(3P)



NAME
       cunmbr  -  overwrite  the  general  complex M-by-N matrix C with Q*C or
       Q**H*C or C*Q**H or C*Q or P*C or P**H*C or C*P or C*P**H


SYNOPSIS
       SUBROUTINE CUNMBR(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
             WORK, LWORK, INFO)

       CHARACTER*1 VECT, SIDE, TRANS
       COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
       INTEGER M, N, K, LDA, LDC, LWORK, INFO

       SUBROUTINE CUNMBR_64(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
             WORK, LWORK, INFO)

       CHARACTER*1 VECT, SIDE, TRANS
       COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
       INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO




   F95 INTERFACE
       SUBROUTINE UNMBR(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
              LDC, WORK, LWORK, INFO)

       CHARACTER(LEN=1) :: VECT, SIDE, TRANS
       COMPLEX, DIMENSION(:) :: TAU, WORK
       COMPLEX, DIMENSION(:,:) :: A, C
       INTEGER :: M, N, K, LDA, LDC, LWORK, INFO

       SUBROUTINE UNMBR_64(VECT, SIDE, TRANS, M, N, K, A, LDA, TAU,
              C, LDC, WORK, LWORK, INFO)

       CHARACTER(LEN=1) :: VECT, SIDE, TRANS
       COMPLEX, DIMENSION(:) :: TAU, WORK
       COMPLEX, DIMENSION(:,:) :: A, C
       INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO




   C INTERFACE
       #include <sunperf.h>

       void cunmbr(char vect, char side, char trans, int m, int n, int k, com-
                 plex  *a,  int  lda,  complex  *tau, complex *c, int ldc, int
                 *info);

       void cunmbr_64(char vect, char side, char trans, long m, long  n,  long
                 k,  complex *a, long lda, complex *tau, complex *c, long ldc,
                 long *info);



PURPOSE
       If VECT = 'Q', CUNMBR overwrites the general complex  M-by-N  matrix  C
       with

                       SIDE = 'L'     SIDE = 'R'
       TRANS = 'N':      Q * C          C * Q
       TRANS = 'C':      Q**H * C       C * Q**H

       If  VECT  =  'P', CUNMBR overwrites the general complex M-by-N matrix C
       with

                       SIDE = 'L'     SIDE = 'R'
       TRANS = 'N':      P * C          C * P
       TRANS = 'C':      P**H * C       C * P**H

       Here Q and P**H are the unitary  matrices  determined  by  CGEBRD  when
       reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q and
       P**H are defined as products of elementary  reflectors  H(i)  and  G(i)
       respectively.

       Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order
       of the unitary matrix Q or P**H that is applied.

       If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: if nq >= k,
       Q = H(1) * H(2) . . . H(k);
       if nq < k, Q = H(1) * H(2) . . . H(nq-1).

       If VECT = 'P', A is assumed to have been a K-by-NQ matrix: if k < nq, P
       = G(1) * G(2) . . . G(k);
       if k >= nq, P = G(1) * G(2) . . . G(nq-1).


ARGUMENTS
       VECT (input)
                 = 'Q': apply Q or Q**H;
                 = 'P': apply P or P**H.


       SIDE (input)
                 = 'L': apply Q, Q**H, P or P**H from the Left;
                 = 'R': apply Q, Q**H, P or P**H from the Right.


       TRANS (input)
                 = 'N':  No transpose, apply Q or P;
                 = 'C':  Conjugate transpose, apply Q**H or P**H.


       M (input) The number of rows of the matrix C. M >= 0.


       N (input) The number of columns of the matrix C. N >= 0.


       K (input) If VECT = 'Q', the number of columns in the  original  matrix
                 reduced  by CGEBRD.  If VECT = 'P', the number of rows in the
                 original matrix reduced by CGEBRD.  K >= 0.


       A (input) (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq)        if VECT  =  'P'
                 The  vectors  which define the elementary reflectors H(i) and
                 G(i), whose products determine  the  matrices  Q  and  P,  as
                 returned by CGEBRD.


       LDA (input)
                 The  leading dimension of the array A.  If VECT = 'Q', LDA >=
                 max(1,nq); if VECT = 'P', LDA >= max(1,min(nq,K)).


       TAU (input)
                 TAU(i) must contain  the  scalar  factor  of  the  elementary
                 reflector  H(i)  or G(i) which determines Q or P, as returned
                 by CGEBRD in the array argument TAUQ or TAUP.


       C (input/output)
                 On entry, the M-by-N matrix C.  On exit, C is overwritten  by
                 Q*C  or  Q**H*C  or  C*Q**H or C*Q or P*C or P**H*C or C*P or
                 C*P**H.


       LDC (input)
                 The leading dimension of the array C. LDC >= max(1,M).


       WORK (workspace)
                 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.


       LWORK (input)
                 The dimension of the array WORK.  If SIDE  =  'L',  LWORK  >=
                 max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum per-
                 formance LWORK >= N*NB if SIDE = 'L', and LWORK  >=  M*NB  if
                 SIDE = 'R', where NB is the optimal blocksize.

                 If LWORK = -1, then a workspace query is assumed; the routine
                 only calculates the optimal size of the WORK  array,  returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.


       INFO (output)
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument had an illegal value




                                  7 Nov 2015                        cunmbr(3P)