zunmlq - N matrix C with Q*C, or Q**H*C, or C*Q**H, or C*Q, where Q is a complex unitary matrix defined as the product of K elementary reflectors
SUBROUTINE ZUNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER*1 SIDE, TRANS DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*) INTEGER M, N, K, LDA, LDC, LWORK, INFO SUBROUTINE ZUNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER*1 SIDE, TRANS DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*) INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO F95 INTERFACE SUBROUTINE UNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER(LEN=1) :: SIDE, TRANS COMPLEX(8), DIMENSION(:) :: TAU, WORK COMPLEX(8), DIMENSION(:,:) :: A, C INTEGER :: M, N, K, LDA, LDC, LWORK, INFO SUBROUTINE UNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER(LEN=1) :: SIDE, TRANS COMPLEX(8), DIMENSION(:) :: TAU, WORK COMPLEX(8), DIMENSION(:,:) :: A, C INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO C INTERFACE #include <sunperf.h> void zunmlq(char side, char trans, int m, int n, int k, doublecomplex *a, int lda, doublecomplex *tau, doublecomplex *c, int ldc, int *info); void zunmlq_64(char side, char trans, long m, long n, long k, double- complex *a, long lda, doublecomplex *tau, doublecomplex *c, long ldc, long *info);
Oracle Solaris Studio Performance Library                           zunmlq(3P)
NAME
       zunmlq  -  overwrite  the  general complex M-by-N matrix C with Q*C, or
       Q**H*C, or C*Q**H, or C*Q, where Q is a complex unitary matrix  defined
       as the product of K elementary reflectors
SYNOPSIS
       SUBROUTINE ZUNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
             LWORK, INFO)
       CHARACTER*1 SIDE, TRANS
       DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
       INTEGER M, N, K, LDA, LDC, LWORK, INFO
       SUBROUTINE ZUNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
             LWORK, INFO)
       CHARACTER*1 SIDE, TRANS
       DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
       INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
   F95 INTERFACE
       SUBROUTINE UNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
              WORK, LWORK, INFO)
       CHARACTER(LEN=1) :: SIDE, TRANS
       COMPLEX(8), DIMENSION(:) :: TAU, WORK
       COMPLEX(8), DIMENSION(:,:) :: A, C
       INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
       SUBROUTINE UNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
              LDC, WORK, LWORK, INFO)
       CHARACTER(LEN=1) :: SIDE, TRANS
       COMPLEX(8), DIMENSION(:) :: TAU, WORK
       COMPLEX(8), DIMENSION(:,:) :: A, C
       INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
   C INTERFACE
       #include <sunperf.h>
       void  zunmlq(char  side, char trans, int m, int n, int k, doublecomplex
                 *a, int lda, doublecomplex *tau, doublecomplex *c,  int  ldc,
                 int *info);
       void  zunmlq_64(char  side, char trans, long m, long n, long k, double-
                 complex *a, long lda, doublecomplex *tau,  doublecomplex  *c,
                 long ldc, long *info);
PURPOSE
       zunmlq overwrites the general complex M-by-N matrix C with
                       SIDE = 'L'     SIDE = 'R'
       TRANS = 'N':      Q * C          C * Q
       TRANS = 'C':      Q**H * C       C * Q**H
       where Q is a complex unitary matrix defined as the product of k elemen-
       tary reflectors
             Q = H(k)**H . . . H(2)**H * H(1)**H
       as returned by ZGELQF. Q is of order M if SIDE = 'L' and of order N  if
       SIDE = 'R'.
ARGUMENTS
       SIDE (input)
                 = 'L': apply Q or Q**H from the Left;
                 = 'R': apply Q or Q**H from the Right.
       TRANS (input)
                 = 'N':  No transpose, apply Q;
                 = 'C':  Conjugate transpose, apply Q**H.
       M (input) The number of rows of the matrix C. M >= 0.
       N (input) The number of columns of the matrix C. N >= 0.
       K (input) The number of elementary reflectors whose product defines the
                 matrix Q.  If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >=  K
                 >= 0.
       A (input) (LDA,M)  if  SIDE  =  'L', (LDA,N) if SIDE = 'R' The i-th row
                 must contain the vector which defines the elementary  reflec-
                 tor  H(i),  for  i  = 1,2,...,k, as returned by ZGELQF in the
                 first k rows of its array argument A.  A is modified  by  the
                 routine but restored on exit.
       LDA (input)
                 The leading dimension of the array A. LDA >= max(1,K).
       TAU (input)
                 TAU(i)  must  contain  the  scalar  factor  of the elementary
                 reflector H(i), as returned by ZGELQF.
       C (input/output)
                 On entry, the M-by-N matrix C.  On exit, C is overwritten  by
                 Q*C or Q**H*C or C*Q**H or C*Q.
       LDC (input)
                 The leading dimension of the array C. LDC >= max(1,M).
       WORK (workspace)
                 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
       LWORK (input)
                 The  dimension  of  the  array WORK.  If SIDE = 'L', LWORK >=
                 max(1,N); if SIDE = 'R', LWORK >= max(1,M).  For optimum per-
                 formance LWORK >= N*NB if SIDE 'L', and LWORK >= M*NB if SIDE
                 = 'R', where NB is the optimal blocksize.
                 If LWORK = -1, then a workspace query is assumed; the routine
                 only  calculates  the optimal size of the WORK array, returns
                 this value as the first entry of the WORK array, and no error
                 message related to LWORK is issued by XERBLA.
       INFO (output)
                 = 0:  successful exit;
                 < 0:  if INFO = -i, the i-th argument had an illegal value.
                                  7 Nov 2015                        zunmlq(3P)