Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

cgeqrt2 (3p)

Name

cgeqrt2 - compute a QR factorization of a general complex matrix using the compact WY representation of Q

Synopsis

SUBROUTINE CGEQRT2(M, N, A, LDA, T, LDT, INFO)


INTEGER INFO, LDA, LDT, M, N

COMPLEX A(LDA,*), T(LDT,*)


SUBROUTINE CGEQRT2_64(M, N, A, LDA, T, LDT, INFO)


INTEGER*8 INFO, LDA, LDT, M, N

COMPLEX A(LDA,*), T(LDT,*)


F95 INTERFACE
SUBROUTINE GEQRT2(M, N, A, LDA, T, LDT, INFO)


INTEGER :: M, N, LDA, LDT, INFO

COMPLEX, DIMENSION(:,:) :: A, T


SUBROUTINE GEQRT2_64(M, N, A, LDA, T, LDT, INFO)


INTEGER(8) :: M, N, LDA, LDT, INFO

COMPLEX, DIMENSION(:,:) :: A, T


C INTERFACE
#include <sunperf.h>

void cgeqrt2 (int m, int n, floatcomplex *a, int lda, floatcomplex  *t,
int ldt, int *info);


void  cgeqrt2_64  (long m, long n, floatcomplex *a, long lda, floatcom-
plex *t, long ldt, long *info);

Description

Oracle Solaris Studio Performance Library                          cgeqrt2(3P)



NAME
       cgeqrt2  - compute a QR factorization of a general complex matrix using
       the compact WY representation of Q


SYNOPSIS
       SUBROUTINE CGEQRT2(M, N, A, LDA, T, LDT, INFO)


       INTEGER INFO, LDA, LDT, M, N

       COMPLEX A(LDA,*), T(LDT,*)


       SUBROUTINE CGEQRT2_64(M, N, A, LDA, T, LDT, INFO)


       INTEGER*8 INFO, LDA, LDT, M, N

       COMPLEX A(LDA,*), T(LDT,*)


   F95 INTERFACE
       SUBROUTINE GEQRT2(M, N, A, LDA, T, LDT, INFO)


       INTEGER :: M, N, LDA, LDT, INFO

       COMPLEX, DIMENSION(:,:) :: A, T


       SUBROUTINE GEQRT2_64(M, N, A, LDA, T, LDT, INFO)


       INTEGER(8) :: M, N, LDA, LDT, INFO

       COMPLEX, DIMENSION(:,:) :: A, T


   C INTERFACE
       #include <sunperf.h>

       void cgeqrt2 (int m, int n, floatcomplex *a, int lda, floatcomplex  *t,
                 int ldt, int *info);


       void  cgeqrt2_64  (long m, long n, floatcomplex *a, long lda, floatcom-
                 plex *t, long ldt, long *info);


PURPOSE
       cgeqrt2 computes a QR factorization of a complex M-by-N matrix A, using
       the compact WY representation of Q.


ARGUMENTS
       M (input)
                 M is INTEGER
                 The number of rows of the matrix A.  M >= N.


       N (input)
                 N is INTEGER
                 The number of columns of the matrix A.  N >= 0.


       A (input/output)
                 A is COMPLEX array, dimension (LDA,N)
                 On entry, the complex M-by-N matrix A.  On exit, the elements
                 on and above the diagonal contain the N-by-N upper triangular
                 matrix  R; the elements below the diagonal are the columns of
                 V.  See below for further details.


       LDA (input)
                 LDA is INTEGER
                 The leading dimension of the array A.
                 LDA >= max(1,M).


       T (output)
                 T is COMPLEX array, dimension (LDT,N)
                 The N-by-N upper triangular factor of  the  block  reflector.
                 The  elements  on  and  above  the diagonal contain the block
                 reflector T; the elements below the diagonal  are  not  used.
                 See below for further details.


       LDT (input)
                 LDT is INTEGER
                 The leading dimension of the array T.
                 LDT >= max(1,N).


       INFO (output)
                 INFO is INTEGER
                 = 0: successful exit
                 < 0: if INFO = -i, the i-th argument had an illegal value


FURTHER DETAILS
       The  matrix  V stores the elementary reflectors H(i) in the i-th column
       below the diagonal. For example, if M=5 and N=3, the matrix V is

                      V = (  1       )
                          ( v1  1    )
                          ( v1 v2  1 )
                          ( v1 v2 v3 )
       where the vi's represent the vectors which define H(i), which are returned
       in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
       block reflector H is then given by

                    H = I - V * T * V**H

       where V**H is the conjugate transpose of V.



                                  7 Nov 2015                       cgeqrt2(3P)