dgtts2 - solve a system of linear equations with a tridiagonal matrix using the LU factorization computed by dgttrf
SUBROUTINE DGTTS2(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB) INTEGER ITRANS, LDB, N, NRHS INTEGER IPIV(*) DOUBLE PRECISION B(LDB,*), D(*), DL(*), DU(*), DU2(*) SUBROUTINE DGTTS2_64(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB) INTEGER*8 ITRANS, LDB, N, NRHS INTEGER*8 IPIV(*) DOUBLE PRECISION B(LDB,*), D(*), DL(*), DU(*), DU2(*) F95 INTERFACE SUBROUTINE GTTS2(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB) REAL(8), DIMENSION(:,:) :: B INTEGER :: ITRANS, N, NRHS, LDB INTEGER, DIMENSION(:) :: IPIV REAL(8), DIMENSION(:) :: DL, D, DU, DU2 SUBROUTINE GTTS2_64(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB) REAL(8), DIMENSION(:,:) :: B INTEGER(8) :: ITRANS, N, NRHS, LDB INTEGER(8), DIMENSION(:) :: IPIV REAL(8), DIMENSION(:) :: DL, D, DU, DU2 C INTERFACE #include <sunperf.h> void dgtts2 (int itrans, int n, int nrhs, double *dl, double *d, double *du, double *du2, int *ipiv, double *b, int ldb); void dgtts2_64 (long itrans, long n, long nrhs, double *dl, double *d, double *du, double *du2, long *ipiv, double *b, long ldb);
Oracle Solaris Studio Performance Library dgtts2(3P)
NAME
dgtts2 - solve a system of linear equations with a tridiagonal matrix
using the LU factorization computed by dgttrf
SYNOPSIS
SUBROUTINE DGTTS2(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB)
INTEGER ITRANS, LDB, N, NRHS
INTEGER IPIV(*)
DOUBLE PRECISION B(LDB,*), D(*), DL(*), DU(*), DU2(*)
SUBROUTINE DGTTS2_64(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB)
INTEGER*8 ITRANS, LDB, N, NRHS
INTEGER*8 IPIV(*)
DOUBLE PRECISION B(LDB,*), D(*), DL(*), DU(*), DU2(*)
F95 INTERFACE
SUBROUTINE GTTS2(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB)
REAL(8), DIMENSION(:,:) :: B
INTEGER :: ITRANS, N, NRHS, LDB
INTEGER, DIMENSION(:) :: IPIV
REAL(8), DIMENSION(:) :: DL, D, DU, DU2
SUBROUTINE GTTS2_64(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB)
REAL(8), DIMENSION(:,:) :: B
INTEGER(8) :: ITRANS, N, NRHS, LDB
INTEGER(8), DIMENSION(:) :: IPIV
REAL(8), DIMENSION(:) :: DL, D, DU, DU2
C INTERFACE
#include <sunperf.h>
void dgtts2 (int itrans, int n, int nrhs, double *dl, double *d, double
*du, double *du2, int *ipiv, double *b, int ldb);
void dgtts2_64 (long itrans, long n, long nrhs, double *dl, double *d,
double *du, double *du2, long *ipiv, double *b, long ldb);
PURPOSE
dgtts2 solves one of the systems of equations A*X=B or A**T*X=B, with
a tridiagonal matrix A using the LU factorization computed by DGTTRF.
ARGUMENTS
ITRANS (input)
ITRANS is INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose),
= 1: A**T* X = B (Transpose),
= 2: A**T* X = B (Conjugate transpose = Transpose).
N (input)
N is INTEGER
The order of the matrix A.
NRHS (input)
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input)
DL is DOUBLE PRECISION array, dimension (N-1)
The (N-1) multipliers that define the matrix L from the LU
factorization of A.
D (input)
D is DOUBLE PRECISION array, dimension (N)
The N diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input)
DU is DOUBLE PRECISION array, dimension (N-1)
The (N-1) elements of the first super-diagonal of U.
DU2 (input)
DU2 is DOUBLE PRECISION array, dimension (N-2)
The (N-2) elements of the second super-diagonal of U.
IPIV (input)
IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= N, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input/output)
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB (input)
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
7 Nov 2015 dgtts2(3P)