dormqr - N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
SUBROUTINE DORMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER*1 SIDE, TRANS INTEGER M, N, K, LDA, LDC, LWORK, INFO DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*) SUBROUTINE DORMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER*1 SIDE, TRANS INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*) F95 INTERFACE SUBROUTINE ORMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER(LEN=1) :: SIDE, TRANS INTEGER :: M, N, K, LDA, LDC, LWORK, INFO REAL(8), DIMENSION(:) :: TAU, WORK REAL(8), DIMENSION(:,:) :: A, C SUBROUTINE ORMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER(LEN=1) :: SIDE, TRANS INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO REAL(8), DIMENSION(:) :: TAU, WORK REAL(8), DIMENSION(:,:) :: A, C C INTERFACE #include <sunperf.h> void dormqr(char side, char trans, int m, int n, int k, double *a, int lda, double *tau, double *c, int ldc, int *info); void dormqr_64(char side, char trans, long m, long n, long k, double *a, long lda, double *tau, double *c, long ldc, long *info);
Oracle Solaris Studio Performance Library dormqr(3P)
NAME
dormqr - overwrite the general real M-by-N matrix C with SIDE = 'L'
SIDE = 'R' TRANS = 'N'
SYNOPSIS
SUBROUTINE DORMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)
CHARACTER*1 SIDE, TRANS
INTEGER M, N, K, LDA, LDC, LWORK, INFO
DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)
SUBROUTINE DORMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)
CHARACTER*1 SIDE, TRANS
INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
DOUBLE PRECISION A(LDA,*), TAU(*), C(LDC,*), WORK(*)
F95 INTERFACE
SUBROUTINE ORMQR(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)
CHARACTER(LEN=1) :: SIDE, TRANS
INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
REAL(8), DIMENSION(:) :: TAU, WORK
REAL(8), DIMENSION(:,:) :: A, C
SUBROUTINE ORMQR_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
LDC, WORK, LWORK, INFO)
CHARACTER(LEN=1) :: SIDE, TRANS
INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
REAL(8), DIMENSION(:) :: TAU, WORK
REAL(8), DIMENSION(:,:) :: A, C
C INTERFACE
#include <sunperf.h>
void dormqr(char side, char trans, int m, int n, int k, double *a, int
lda, double *tau, double *c, int ldc, int *info);
void dormqr_64(char side, char trans, long m, long n, long k, double
*a, long lda, double *tau, double *c, long ldc, long *info);
PURPOSE
dormqr overwrites the general real M-by-N matrix C with TRANS = 'T':
Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of k elemen-
tary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N if
SIDE = 'R'.
ARGUMENTS
SIDE (input)
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS (input)
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M (input) The number of rows of the matrix C. M >= 0.
N (input) The number of columns of the matrix C. N >= 0.
K (input) The number of elementary reflectors whose product defines the
matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K
>= 0.
A (input) The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGEQRF in the first k columns of its array argument A. A is
modified by the routine but restored on exit.
LDA (input)
The leading dimension of the array A. If SIDE = 'L', LDA >=
max(1,M); if SIDE = 'R', LDA >= max(1,N).
TAU (input)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQRF.
C (input/output)
On entry, the M-by-N matrix C. On exit, C is overwritten by
Q*C or Q**T*C or C*Q**T or C*Q.
LDC (input)
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input)
The dimension of the array WORK. If SIDE = 'L', LWORK >=
max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum per-
formance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if
SIDE = 'R', where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
7 Nov 2015 dormqr(3P)