cc [ flag... ] file... –lmlib [ library... ] #include <mlib.h> mlib_status mlib_MatrixTranspose_U8(mlib_u8 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_U8C(mlib_u8 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_S8(mlib_s8 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_S8C(mlib_s8 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_S16(mlib_s16 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_S16C(mlib_s16 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_S32(mlib_s32 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_S32C(mlib_s32 *xz, mlib_s32 mn);
Each of these functions performs an in-place transpose of a square matrix.
For real data, the following pseudo code applies:
for (i = 1; i < mn; i++) {
    for (j = 0; j < i; i++) {
        tmp          = xz[i*mn + j];
        xz[i*mn + j] = xz[j*mn + i];
        xz[j*mn + i] = tmp;
    }
}
For complex data, the following pseudo code applies:
for (i = 1; i < mn; i++) {
    for (j = 0; j < i; i++) {
        tmp0                 = xz[2*(i*mn + j)];
        tmp1                 = xz[2*(i*mn + j) + 1];
        xz[2*(i*mn + j)]     = xz[2*(j*mn + i)];
        xz[2*(i*mn + j) + 1] = xz[2*(j*mn + i) + 1];
        xz[2*(j*mn + i)]     = tmp0;
        xz[2*(j*mn + i) + 1] = tmp1;
    }
}
Each of the functions takes the following arguments:
Pointer to the source and destination matrix.
Number of rows and columns in the matrix.
Each of the functions returns MLIB_SUCCESS if successful. Otherwise it returns MLIB_FAILURE.
See attributes(5) for descriptions of the following attributes:
| 
 |